
The 3+1 Approach to Software Architecture

Description Using UML

Revision 2.4

Henrik Bærbak Christensen, Aino Corry, and Klaus Marius Hansen
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{hbc,apaipi,marius}@daimi.au.dk

May 2016

Abstract

This document presents a practical way of describing software archi-
tectures using the Unified Modeling Language. The approach is based
on a “3+1” structure in which three viewpoints on the described system
are used – module, component & connector, and allocation – are used to
describe a solution for a set of architectural requirements.

1 Introduction

Software architecture represents an appropriate level of abstraction for many
system development activitites [Bass et al., 2003]. Consequently and cor-
respondingly, appropriate software architectural descriptions may support,
e.g., stakeholder communication, iterative and incremental architectural de-
sign, or evaluation of architectures [Bass et al., 2003], [Clements et al., 2002b],
[Clements et al., 2002a].

This document represents a practical basis for architectural
description and in doing so, we follow the IEEE recommended
practice for architectural description of software-intensive systems
[Software Engineering Standards Committee, 2000]. Central to this rec-
ommended practice is the concept of a viewpoint through which the software
architecture of a system is described (see Figure 1). A concrete architectural
description consists of a set of views corresponding to a chosen set of viewpoints.
This document recommends the use of three viewpoints (in accordance with
the recommendations of [Clements et al., 2002a]):

• A Module viewpoint concerned with how functionality of the system maps
to static development units,

• a Component & Connector viewpoint concerned with the runtime mapping
of functionality to components of the architecture, and

• an Allocation viewpoint concerned with how software entities are mapped
to environmental entities

1



In addition to the views on the architecture, we recommend collecting ar-
chitecturally significant requirements (see Section 2) in the architecture doc-
umentation. This corresponds to the mission of a system as described in
[Software Engineering Standards Committee, 2000].

The views corresponding to these viewpoints are described using the Uni-
fied Modeling Language standard (UML; [OMG, 2003]). This reports provides
examples of doing so. The UML has certain shortcomings in describing soft-
ware architectures effectively1, but is used here to strike a balance between
precision/expressiveness and understandability of architectural descriptions.

System Architecture
has an

Stakeholder

has 1..*

Architectural 
Description

identifies

described by

1..*

Viewpoint

Component & 
Connector 
Viewpoint

Module 
Viewpoint

Deployment 
Viewpoint

View

1..*organized by

Concern
has

1..*

is important to

1..*

conforms to

selects

Figure 1: Ontology of architectural descriptions

1.1 Structure

The rest of this document is structured in two main sections: One introduc-
ing the “Architectural Requirements” section of the documentation (Section 2,
page 3), and one introducing the “Architectural Description” section of the doc-
umentation (Section 2, page 3). These sections are introduced in general and a
specific example of applying them to the documentation of a system is provided.

The examples are created to describe a point-of-sale system (NextGen POS)
for, e.g., a supermarket point-of-sales. The example is inspired by the case
study of Larman [Larman, 2002]. The system supports the recording of sales
and handling of payments for a generic store; it includes hardware components
as a bar code scanner, a display, a register, a terminal in the inventory hall, etc.
More details of the functionality of the system can be found in Section 2.

1This is in particular connected to the central Component & Connector viewpoint
[Clements et al., 2002a]

2



2 Architectural Requirements

Two types of descriptions of architecturally significant requirements are appro-
priate: scenario-based and quality attribute-based requirements.

The architecturally significant scenarios (or use cases) contain a subset of the
overall scenarios providing the functional requirements for the system. These
can possibly be augmented with requirements on performance, availability, reli-
ability etc. related to the scenarios. Moreover, “non-functional” scenarios, e.g.,
describing modifiability of the system may be useful as a supplement2.

All requirements cannot be described as scenarios of system functionality,
and we propose supplementing the scenarios with a set of the most critical
quality attributes that the system should fulfil. Since quality attributes (such
as modifiability and performance) are often in conflict, this needs to be a subset
of all architectural quality attributes.

The goal of describing architectural requirements is to enable the construc-
tion of a set of “test cases” against which different architectural designs may be
compared and/or evaluated.

2.1 Example

In the NextGen POS case, a scenario is a specific path through a use case. An
example of such a scenario is:

Process Sale: A customer arrives at a checkout with items to pur-
chase. The cashier uses the POS system to record each purchased
item. The system presents a running total and line-item details.
The customer enters payment information, which the system vali-
dates and records. The system updates inventory. The customer
receives a receipt from the system and then leaves with the items.

Critical architectural attributes for the NextGen POS system are3:

• Availability. The system shall be highly available since the effectiveness
of sales depends on its availability

• Portability. The system shall be portable to a range of different platforms
to support a product line of POS systems

• Usability. The system shall be usable by clerks with a minimum of training
and with a high degree of efficiency

3 Architectural Description

It is beneficial, when documenting software architecture, to apply different view-
points to the system. Otherwise the description of the system will be incompre-
hensible.

2Architecturally significant scenarios are the basis of many architectural evalation ap-
proaches [Clements et al., 2002b]

3Note that this choice of quality attributes excludes, e.g., performance, scalability, security,
safety, reliability, integrability, and testability.

3



Taken this into account, it is first important with a viewpoint which describes
the functionality of the system in terms of how functionality is mapped into im-
plementation. Secondly, it is important to describe how the functionality of the
system maps to components and interaction among components. And thirdly,
it is important to see how software components map onto the environment, in
particular hardware structures. These three viewpoints are the module, compo-
nent & connector, and allocation viewpoints respectively in concordance with
[Clements et al., 2002a].

The viewpoints used in the architectural description section are defined as
proposed in [Software Engineering Standards Committee, 2000]: for each, we
first have a section describing the concerns of this viewpoint, then a section
describing the stakeholders, then a section describing the elements and relations
that can be used to describe views in this viewpoint, and finally an example of
a view.

3.1 Module Viewpoint

3.1.1 Concerns

This architectural viewpoint is concerned with how the functionality is mapped
to the units of implementation. It visualizes the static view of the systems
architecture by showing the elements that comprise the system and their rela-
tionships.

3.1.2 Stakeholder Roles

This viewpoint is important to architects and developers working on or with the
system.

3.1.3 Elements and Relations

The elements are units of implementation including:

Class: A class describing the properties of the objects that exist at
runtime.

Package: A logical division of classes in the system. This can refer
to packages as we find them in Java or just give a logical division
between the classes of the system.

Interface: A classification of the interface of the element that real-
izes it. It can refer to the interfaces found in e.g. Java or just a
description of an interface that a class can conform to.

The relations describe constraints on the runtime relationships between ele-
ments:

Association: Shows that there is a hard or weak aggregation rela-
tionship between the elements and can be used between classes.

Generalization: Shows that there is a generalization relation between
the elements and can be used between two classes or two interfaces.

4



Realization: Shows that one element realizes the other and can be
used from a class to the interface it implements.

Dependency: Shows that there is a dependency between the elements
and can be used between all the elements.

3.1.4 Examples

The module view of the POS system can be described using the class diagrams
of UML, which can contain all the above mentioned elements and relations.

It is possible to describe the system top-down by starting with the most
top-level diagram. In figure 2 the overall packages of the system are shown.
Figure 3 and figure 4 show further decomposition of the Domain Model package
and the Payments package in the Domain Model package.

POS

User Interface System Interface

Domain Model

Technical Services

Rule Engine

Figure 2: Package overview diagram for the POS system

Dependencies among packages are also shown; these dependencies arise be-
cause of relationship among classes in different packages. As an example, con-
sider the association between figure 4 there is an association from classes in
Payments to the Customer class of the Sales package. This relationship gives
rise to a dependency from the Payments to Sales package as shown in figure 3.

Domain Model

Payments

Sales

Inventory

Pricing

Service Access

Figure 3: Decomposition of the Domain Model package of the POS system

Typically, class diagrams such as figure 4 will suppress detail and also omit

5



elements for clarity, since a major purpose of architectural description is com-
munication. In figure 4, e.g., details of methods and attributes of classes have
been suppressed and certain classes have been omitted.

Payments

amount

Payment

amountTendered

CashPayment CreditPayment

Sales::Customer

CreditAuthorizationService

address
name
phoneNumber

AuthorizationService

number

DriversLicence

expiryDate
number

CreditCard

Authorized-by
* 1

Establishes-credit-for

*

1

* 1

11

Figure 4: Decomposition of the Payments package of the POS system

3.2 Component and Connectors (C&C) Viewpoint

3.2.1 Concerns

This viewpoint is concerned with the run-time functionality of the system—i.e.
what does the system do? This functionality lies as the heart of purpose of
the system under development, thus this viewpoint is of course a very central
viewpoint, and architectural design often starts from it4. In this viewpoint,
software systems are perceived as consisting of components which are black-
box units of functionality and connectors which are first-class representations of
communication paths between components.

Components embody functional behaviour while control and communication
aspects are defined by the connectors. Paraphrasing this, you can say that com-
ponents define what parts of the system is responsible for doing while connectors
define how components exchange control and data.

It is important to describe properties of both components and connectors
in the documentation. This is done using a combination of textual descrip-
tions (listing responsibilities for example) with diagrams showing protocols,
state transitions, threading and concurrency issues as seems relevant to the
architecture at hand.

3.2.2 Stakeholder Roles

This viewpoint is important to architects, developers, and may also serve to
give an impression of the overall system runtime behaviour to customers and
end users.

4Hofmeister et al. [Hofmeister et al., 1999] defines a process where this viewpoint is the
first to be considered and other viewpoints are derived and elaborated from it.

6



BCSP

JDBC
MVC

:POS

server

client
source

dest

view/control

model

:Inventory

:BarCodeScanner

:User Interface

:Sales

Figure 5: C&C overview of the POS system

3.2.3 Elements and Relations

The C&C viewpoint has one element type and one relation type:

Component: A functional unit that has a well-defined behavioural
responsibility.

Connector: A communication relation between components that de-
fines how control and data is exchanged.

Both are first class citizens of this viewpoint and both may contain be-
haviour. This is obvious for components, but connectors may exhibit behaviour
as well. Examples of connectors with behaviour are those that provide buffering
of data between a data producer and consumer, data convertion, adaption of
protocols, remote procedure calls, networking, etc.

A connector defines one or more protocols. A protocol defines both incoming
and outgoing operations and mandates the ordering of them. Thus a connec-
tor’s protocol is radically different from a class’ interface that only tells what
operations its instances provide (not uses) and does not describe any sequencing
of method calls.

3.2.4 Example

The POS system has four major functional parts as shown in the C&C view
in figure 5. Components are represented by UML active objects, connectors
by links with association names and possibly role names. Active objects are
typically processes or threads in the operating system or programming language,
and links the communication paths between them.

The diagram cannot stand alone, as component names and connector names
are only indicative of the functional responsiblities associated with each. We
therefore provide an description of component functionality in terms of respon-
sibilities:

• Barcode Scanner. Responsible for 1) Control and communication with
bar code scanner hardware and 2) notification providing ID of scanned
bar code for items passing the scanner.

7



• Sales. Responsible for 1) keeping track of items scanned; their price and
quantity; running total of scanned items and 2) initiation and end of sales
handling.

• Presentation. Responsible for 1) displaying item names, quantity, subto-
tals and grand total on a terminal 2) printing item, quantity, subtotals
and grand total on paper recipt 3) handle key board input for defining
quantities when only one of a set of items are scanned.

• Inventory. Responsible for 1) keeping track of items in store 2) mapping
between bar code ID’s and item name and unit price.

Likewise, the connectors’ protocols needs to be described in more detail.
The level of detail needed depends on the architecture at hand. For some
connectors, it may be sufficient with a short textual description (for instance
if it is a straightforward application of the observer pattern; or if it is a direct
memory read); others may best be explained by UML interaction diagrams;
and still others may have a very large set of potential interactions (like a SQL
connector) of which only a few may be worthwhile to describe in more detail.

The POS example names three connectors:

• MVC. A standard MVC patterns is the protocol for this connector that
connects the Sales component serving the role of model and Presentation
serving as controller and view.

• JDBC. This connector handles standard SQL queries over the JDBC pro-
tocol.

• BSCP. This connector defines a protocol for connecting with a barcode
scanner. Data and control is exchanged using ASCII strings in a coded
format containing control words and data elements.

Sequence diagrams can be used to describe connector protocols. Depending
on the system, it may be relevant to document connector protocols individually
(a sequence diagram for each protocol) and/or to provide the “big picture”
showing interaction over a set of connectors. Typical use cases as well as critical
failure scenarios may be considered for description.

In our point of sales example, an overall sequence diagram (diagram 6 seems
most relevant, as the individual connectors have rather simple protocols. The
scenario shown in the diagram is the event of a single item being scanned and
registered.

Further detail can be provided, like a sequence diagram showing observer
registration and steady state operation for the MVC connector; perhaps table
layout or SQL statements for the JDBC; or command language for the BCSP
connector. However, most likely this information does not provide architectural
insight (they do not affect architectural qualities) and their details should be
found in more detailed documentation instead.

3.3 Allocation Viewpoint

3.3.1 Concerns

This architectural viewpoint is concerned with how the software elements of the
system – in particular the C&C viewpoint elements and relations – are mapped

8



:BarCodeScanner :Sales :Inventory :User Interface

codeScanned(code)

spec := getSpecification(code)

:LineItem
i := new LineItem(spec)

itemAdded(i)

showItem(i

updateStock()

Figure 6: POS “item scanned” scenario

to platform elements in the environment of the system. We are interested in
what the software elements require (e.g., processing power, memory availability,
network bandwidth) and what the hardware elements provide.

3.3.2 Stakeholder Roles

This viewpoint is important to a number of stakeholders: Maintainers needing
to deploy and maintain the system, to users/customers who need to know how
functionality is mapped to hardware, to developers who need to implement the
system, and to architects.

3.3.3 Elements and Relations

The deployment viewpoint has two primary element types:

Software elements: These may be, e.g., executables or link libraries
containing components from the C&C views.

Environmental elements: Nodes of computing hardware

Furthermore, there are three main relation types:

Allocated-to relations: Shows to which environmental elements soft-
ware elements are allocated at runtime. These relations may be
either static or dynamic (e.g., if components move between environ-
mental elements).

Dependencies among software elements

Protocol links among environmental elements showing a communi-
cation protocol used between nodes.

9



3.3.4 Examples

Figure 7 shows the deployment of the NextGen POS system using a UML de-
ployment diagram.

The deployment is a typical 3-tier deployment in which presentation is run
on a client, domain code is run on a J2EE application server, and data is stored
on a database server.

:Application Server
{OS=Linux}

:Database Server
{OS=Linux}

:Terminal

<<device>>
:Barcode Scanner
{OS=VxWorks}

<<RS232>>

<<RMI-IIOP>>

<<JDBC>>

POS

JBoss

MySQL

Figure 7: Deployment view of the NextGen POS system

The following elements are of interest

• Environmental elements (shown as UML nodes)

– The Barcode Scanner is the device used for inputting sold items into
the system. It is read via an RS232 connection to the POS Terminals

– The Terminal is the main point of interaction for the users of the
NextGen POS system

– The Application Server is a machine dedicated for serving all Termi-
nals on an application level

– A Database Server provides secondary storage

• Software elements (Shown as UML components)

– The POS executable component runs the client part of the NextGen
POS system including presentation and handling of external devices

10



(viz., the Barcode Scanner). It communicates with the Application
Server via RMI over IIOP

– JBoss is an open source application server which is used for running
the domain-related functionality of the system. It uses the Database
Server via JDBC

– MySQL is an open source SQL database which handles database-
related functionality (storage, transactions, concurrency control) of
the system.

3.4 Overview

The three viewpoints and their associated elements and relations are summer-
ized below.

Module CC Deployment
Elements Class Component Executable

Interface - Computing node
Package - -

Relations Association Connector Allocated-to
Generalization - Dependency

Realization - Protocol link
Dependency - -

+1 view: Architectural requirements

The mapping to UML is straight forward for the module and deployment
viewpoint but less so for the CC viewpoint. For the CC viewpoint, components
are show by UML Active Objects (that represent run-time entities with their
own thread of execution, typically threads and processes), while connectores are
shown by UML links (that represent control- and data flow using some protocol).

Notes

Revision 2.0 by Klaus Marius and Henrik Christensen has updated the notation
used to UML 2.0.

Revision 2.1 by Henrik Christensen has updated the notation for active ob-
jects.

Revision 2.2 by Henrik Christensen has added the table outlining ele-
ments/relations and viewpoints. Idea originally by part-time student Jesper
Pedersen at an exam in 2011.

Revision 2.3 by Henrik Christensen has improved appearance of figures
(changed format from PNG to PDF).

Revision 2.4 by Henrik Christensen, fixed UML syntax errors in module
viewpoint figures. Thanks to Sune Chung Jepsen for pointing them out.

References

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software
Architecture in Practice. Addison-Wesley, 2 edition.

11



[Clements et al., 2002a] Clements, P., Bachmann, F., Bass, L., Garlan, D.,
Ivers, J., Little, R., Nord, R., and Stafford, J., editors (2002a). Documenting
Software Architectures: Views and Beyond. Addison-Wesley.

[Clements et al., 2002b] Clements, P., Kazman, R., and Klein, M., editors
(2002b). Evaluating Software Architectures: Methods and Case Studies.
Addison-Wesley.

[Hofmeister et al., 1999] Hofmeister, C., Nord, R., and Soni, D., editors (1999).
Applied Software Architecture. Addison-Wesley.

[Larman, 2002] Larman, C. (2002). Applying UML and Patterns. Prentice Hall,
2 edition.

[OMG, 2003] OMG (2003). Unified Modeling Language specification 1.5. Tech-
nical Report formal/2003-03-01, Object Management Group.

[Software Engineering Standards Committee, 2000] Software Engineering
Standards Committee (2000). IEEE recommended practice for architectural
description of software-intensive systems. Technical Report IEEE Std
1471-2000, IEEE Computer Society.

12


