
Mandatory Project: SkyCave Microservice
Architecture

<<Names>>
Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark

<<Group name>>
<<Student names>>
{..., ...}@cs.au.dk

<<Date>>

Contents

1 From Monolith to Microservice 1
1.1 Service Assignment . 1
1.2 Service APIs . 1

1.2.1 PlayerService . 1
1.2.2 CaveService . 1
1.2.3 MessageService . 1

1.3 Consumer-Driven Tests (Faked Storage) 1
1.4 Reflections on DevOps . 2
1.5 Integration (Connector) Tests 2
1.6 Service with Data Layer . 2
1.7 Strangling Process . 2
1.8 Operations . 2
1.9 Artefacts . 2

2 Design for Failure 4
2.1 Design for Failure . 4

2.1.1 Safe failure mode . 4
2.1.2 Code fragments . 4
2.1.3 Demo . 4

2.2 Health Check . 4
2.3 Reflections on “Design for Failure” 5

3 Microservice Architecture Outlook 6
3.1 Problem statement/Hypothesis One 6

3.1.1 Method . 6
3.1.2 Experiments . 6
3.1.3 Results and Conclusion 6
3.1.4 Reflections on the Process 6

3.2 Problem statement/Hypothesis Two 7

1

Abstract

The SkyCave System implements a massive multiuser online experience.
This report outlines the work done by the group to solve the course’s three
mandatory exercises.

Chapter 1

From Monolith to Microservice

This section represents the group’s solution to the first mandatory exercise.

1.1 Service Assignment

[Present the service assignment: Which microservice is your group respon-
sible for? Which two groups supply the other services?]

1.2 Service APIs

Below the final service APIs are documented using the notation of [Either
choose FRDS Â§7.7 [Christensen, 2019] or the OpenAPI initiative].

[You only need to fully fill in the section of your group’s service, for the
other two services, just refer to the supplier group’s name.]

1.2.1 PlayerService

1.2.2 CaveService

1.2.3 MessageService

1.3 Consumer-Driven Tests (Faked Storage)

[Shortly explain your CDTs for your developed REST service, by focusing
on an “interesting, and not too complex” test. Remember to include the
test itself. Perhaps use ’Given-When-Then’ comments or other guides for
the reader.]

1

1.4 Reflections on DevOps

[Shortly outline experiences in the DevOps Process - exchanging APIs, ex-
changing CDTs, collaborations with other groups, ...]

1.5 Integration (Connector) Tests

[Shortly explain your Integration tests for your developed driver/connector
to your REST service, by focusing on an “interesting, and not too complex”
test. Remember to include the test itself. Perhaps use ’Given-When-Then’
comments or other guides for the reader.]

1.6 Service with Data Layer

[This exercise is optional for one-person groups.]
[Include compose-file for your full service, including whatever NoSQL

database you have choosen for the job.]

1.7 Strangling Process

[Outline your strangling process—how SkyCave was migrated into replac-
ing a central CaveStorage storage tier with the three services. Include source
code from one of the methods in the final, refactored, PlayerServant, and
explain it shortly.]

1.8 Operations

[Include your swarm compose-file]
[Include screen snapshots that document that your swarm is fully op-

erational, and can be operated by a ’cmd’]

1.9 Artefacts

The artefacts developed can be found here:

• (Docker hub SkyCave image, including source code)

• (Docker hub REST service image)

• (Link to REST service code base (bitbucket, zip, whatever))

• (Link to CDT’s, if not included in the above link)

2

• (potential other developed artefacts)

3

Chapter 2

Design for Failure

2.1 Design for Failure

[Pick the most complex integration point to your group’s REST service, and
provide a short argumentation for why this integration point was choosen
(detailing it in the sections below)]

2.1.1 Safe failure mode

[Argumentation for the choosen safe failure mode behavior: ’try later’ re-
ply, cached reply, eventually consistent reply, retries, or . . .]

2.1.2 Code fragments

[Include the safe failure mode/graceful degradation code fragment(s) and
shortly explain the code]

2.1.3 Demo

[Include a set of screenshots (avoid font sizes that are too small!) or (per-
haps better) a link to a screencast of 4-8 minutes, that demonstrate a sce-
nario in which the REST service is working correctly (Cmd doing the happy
path stuff), a failure in the REST service is introduced, and next demon-
strated how the safe failure mode works (Cmd being gracefully degra-
dated, server log output, . . .)]

[Screencast = video with voice over explaining what is happening]

2.2 Health Check

[Include the compose-file and highlight and explain the health check and
the restart policy for your group’s service]

4

[Include the /health path handling code in the REST service, and shortly
explain]

2.3 Reflections on “Design for Failure”

[Shortly outline the group’s experiences with increasing availability/stability
of SkyCave using the techniques above. Examples of issues may be effort
invested, particular difficulties, trade-offs, relations to theory, etc.]

5

Chapter 3

Microservice Architecture
Outlook

3.1 Problem statement/Hypothesis One

[Make a short problem statement or hypothesis: what do you want to in-
vestigate and what is the expected outcome? Try as best possible to make
the statement as measurable as possible.]

3.1.1 Method

[Outline shortly how you want to conduct the experiment, how to mea-
sure/reason that the hypothesis is true, how to verify that the expected
outcome is achieved, what systematics you use to ensure the results is not
due to something (false positives)]

3.1.2 Experiments

[Describe experiments and include experimental output: refactored code,
compose files, graphs of measurements, architectural diagrams, whatever
suits your problem statement and experiments]

3.1.3 Results and Conclusion

[Present results and tie the conclusion to the initial problem statement.
What did you learn?]

3.1.4 Reflections on the Process

[Reflect on the exercise/process of solving the exercise.]

6

3.2 Problem statement/Hypothesis Two

[Repeat above template for second issue investigated.]

7

Bibliography

[Christensen, 2019] Christensen, H. B. (2019). Flexible, Reliable, Distributed
Software—Still Using Patterns and Agile Development. LeanPub.com.

8

