Mandatory Project: SkyCave Microservice
Architecture

<<Names>>
Computer Science, University of Aarhus
Aabogade 34, 8200 Arhus N, Denmark
<<Group name>>
<<Student names>>
{..., ...}@cs.au.dk

<<Date>>

Contents

1 From Monolith to Microservice

1.1 Service Assignment
1.2 Service APIs
1.2.1 PlayerService
122 CaveService
123 MessageService
1.3 Consumer-Driven Tests (Faked Storage)
14 ReflectionsonDevOps
1.5 Integration (Connector) Tests
1.6 Service with DataLayer
1.7 StranglingProcess
1.8 Operations,
1.9 Artefacts
2 Design for Failure
21 DesignforFailure
2.1.1 Safefailuremode
212 Codefragments
213 Demo. e
22 HealthCheck,
2.3 Reflections on “Design for Failure”

3 Microservice Architecture Outlook

3.1 Problem statement/HypothesisOne
311 Method.
312 Experiments
3.1.3 Resultsand Conclusion
3.14 Reflections on the Process
3.2 Problem statement/HypothesisTwo

NRNRNNNRNRE R e

(S T U QNG N

AN o) We) Se) W e)Ne) e

Abstract

The SkyCave System implements a massive multiuser online experience.
This report outlines the work done by the group to solve the course’s three
mandatory exercises.

Chapter 1

From Monolith to Microservice

This section represents the group’s solution to the first mandatory exercise.

1.1 Service Assignment

[Present the service assignment: Which microservice is your group respon-
sible for? Which two groups supply the other services?]

1.2 Service APIs

Below the final service APIs are documented using the notation of [Either
choose FRDS A§7.7 [Christensen, 2019] or the OpenAPlI initiative].

[You only need to fully fill in the section of your group’s service, for the
other two services, just refer to the supplier group’s name.]

1.2.1 PlayerService

1.2.2 CaveService

1.2.3 MessageService
1.3 Consumer-Driven Tests (Faked Storage)

[Shortly explain your CDTs for your developed REST service, by focusing
on an “interesting, and not too complex” test. Remember to include the
test itself. Perhaps use 'Given-When-Then” comments or other guides for
the reader.]

1.4 Reflections on DevOps

[Shortly outline experiences in the DevOps Process - exchanging APIs, ex-
changing CDTs, collaborations with other groups, ...]

1.5 Integration (Connector) Tests

[Shortly explain your Integration tests for your developed driver/connector
to your REST service, by focusing on an “interesting, and not too complex”
test. Remember to include the test itself. Perhaps use ‘Given-When-Then’
comments or other guides for the reader.]

1.6 Service with Data Layer

[This exercise is optional for one-person groups.]
[Include compose-file for your full service, including whatever NoSQL
database you have choosen for the job.]

1.7 Strangling Process

[Outline your strangling process—how SkyCave was migrated into replac-
ing a central CaveStorage storage tier with the three services. Include source
code from one of the methods in the final, refactored, PlayerServant, and
explain it shortly.]

1.8 Operations
[Include your swarm compose-file]

[Include screen snapshots that document that your swarm is fully op-
erational, and can be operated by a ‘cmd’]

1.9 Artefacts

The artefacts developed can be found here:

(Docker hub SkyCave image, including source code)

(Docker hub REST service image)

(Link to REST service code base (bitbucket, zip, whatever))

(Link to CDT'’s, if not included in the above link)

¢ (potential other developed artefacts)

Chapter 2

Design for Failure

2.1 Design for Failure

[Pick the most complex integration point to your group’s REST service, and
provide a short argumentation for why this integration point was choosen
(detailing it in the sections below)]

2.1.1 Safe failure mode

[Argumentation for the choosen safe failure mode behavior: "try later” re-
ply, cached reply, eventually consistent reply, retries, or ...]

2.1.2 Code fragments

[Include the safe failure mode/graceful degradation code fragment(s) and
shortly explain the code]

2.1.3 Demo

[Include a set of screenshots (avoid font sizes that are too small!) or (per-
haps better) a link to a screencast of 4-8 minutes, that demonstrate a sce-
nario in which the REST service is working correctly (Cmd doing the happy
path stuff), a failure in the REST service is introduced, and next demon-
strated how the safe failure mode works (Cmd being gracefully degra-
dated, server log output, ...)]

[Screencast = video with voice over explaining what is happening]

2.2 Health Check

[Include the compose-file and highlight and explain the health check and
the restart policy for your group’s service]

[Include the /health path handling code in the REST service, and shortly
explain]

2.3 Reflections on “Design for Failure”
[Shortly outline the group’s experiences with increasing availability / stability

of SkyCave using the techniques above. Examples of issues may be effort
invested, particular difficulties, trade-offs, relations to theory, etc.]

Chapter 3

Microservice Architecture
Outlook

3.1 Problem statement/Hypothesis One

[Make a short problem statement or hypothesis: what do you want to in-
vestigate and what is the expected outcome? Try as best possible to make
the statement as measurable as possible.]

3.1.1 Method

[Outline shortly how you want to conduct the experiment, how to mea-
sure/reason that the hypothesis is true, how to verify that the expected
outcome is achieved, what systematics you use to ensure the results is not
due to something (false positives)]

3.1.2 Experiments

[Describe experiments and include experimental output: refactored code,
compose files, graphs of measurements, architectural diagrams, whatever
suits your problem statement and experiments]

3.1.3 Results and Conclusion

[Present results and tie the conclusion to the initial problem statement.
What did you learn?]

3.1.4 Reflections on the Process

[Reflect on the exercise/process of solving the exercise.]

3.2 Problem statement/Hypothesis Two

[Repeat above template for second issue investigated.]

Bibliography

[Christensen, 2019] Christensen, H. B. (2019). Flexible, Reliable, Distributed
Software—Still Using Patterns and Agile Development. LeanPub.com.

