
Strangling – a process example 
 

The strangling process is pretty challenging, and if care is not taken, then you easily end in 
big-ball-of-mud where nothing works and you have lost track of the thousand places you 
have edited and code quality is rapidly deteriorating. Do not go there… 

I have solved the strangling exercise, and here are some ideas to get you going. Not that this 
is the solution, more that it is inspiration to ‘taking small steps’ and ‘keep focus’ so you do not 
get lost big time (All tests pass all the time!)… Other ‘small steps’ paths are of course also 
possible… 

The starting point and the end point 
First, it is important to keep the goal in mind. Currently we have a nice monolith ‘daemon’ in 
which an implementation, PlayerServant, implements the central Player interface. It does so 
by fetching and storing data in a single storage via the CaveStorage interface (that is, a 
connector to the underlying Redis). 

What we do in the strangling process is to single out one of the bounded contexts (Cave 
handling, message handling, player handling) and focus on the methods in PlayerServant 
that implements just that bounded context; and then refactor the code so these methods no 
longer access CaveStorage, but your service of choice. 

In the example below, I have chosen CaveService as the selected service for introducing. 

Thus the end goal is interaction that goes 

 JUnit test case -> StrangledPlayerServant -> CaveService (for methods like addRoom) 

 JUnit test case -> StrangledPlayerServant -> CaveStorage (for methods like getPlayer) 

As this refactoring is basically a ServiceTest of PlayerServant we of course use test doubles as 
much as we can. In this case – all interfaces can be served by test doubles; just as the original 
would use ‘FakeCaveStorage’ as its CaveStorage implementation, we can just have a 
FakeCaveService implementation to avoid out-of-process calls. 



Selecting a starting point. 
Goal: Make a test case in which a player just get room (0,0,0) but we gradually rework the 
internals to fetch the room, not from CaveStorage, but from a FakeCaveService which 
implements a CaveServiceConnector. 

I create a cave which is reading from my newly created ‘strangling.cpf’ file 

 

This cpf introduce CAVE_SERVICE prefix string which is what I will use to read in the 
configuration of the new service. 

 

Note – the test case pass but nothing is changed. 



Creating the new Player implementation: 
StrangledPlayerServant 
I must pursuade the factory to create a new Player instance which returns my new 
PlayerServant implementation which interacts with the CaveService, not the CaveStorage. I 
do this by “inline” modifying the factory 

 

IntelliJ will of course complain that no such class exist. Just create it and then boldly copy all 
the source code of the original PlayerServant into this class. (Fix the name of the logger 
instance and a few comments here and there). Of course keeping two copies of the same 
source code is normally the start of hell, but in our case it is a stepping stone – keeping the old 
code around until we are sure the new one works. 

As often in test-driven-development this class serves as scaffolding for the code to come: 
Method by method it will be strangled to become the new microservice oriented 
implementation, but still relying on the superclass to cover functionality for the 
‘non-strangled’ part, like messages and player handling. 

My ‘getRoomAt000’ test pass, quite obviously, nonthing has changed; but I do view the log 
message, verifying that indeed I am having the right code executing: 

 

Preparing to fetch initial Rooms from CaveService 
The constructor of PlayerServant ‘refreshes from storage’ which is what we need to change 
into refreshing partially from the CaveService. Thus on top of having a ‘storage’ instance 
variable, I also need a ‘caveService’ instance variable. 



Getting proper access to the CaveService implementation 
Now it is time to actually do something – we get access to our new CaveService in the 
PlayerServant. The original code in this guide was wrong – I used the factory, but you should 
call directly to the ObjectManager, as I do below. The trick is that the objectManager and CPF 
system already allows us to do so: 

 

Making this change require a few steps – the CAVE_SERVICE constant must match the prefix 
in the CPF file, a CaveServiceConnector interface which implements the ExternalService 
interface must be in place: 

 

(The ExternalService is required for the Factory system in SkyCave), and of course our first 
FakeObject implementation of CaveServiceConnector: 



 

Again, this is more or less just building scaffolding code, but we can see that the 
FakeCaveService is actually created from the log file when running the test case. 

 

Fetching initial rooms from CaveService 
Finally, it is time to rewire the StrangledPlayerServant – to request the room from the 
CaveService, not from the CaveStorage. I change the ‘refresh’ code to 

 

And intelliJ yells as me as the method is not defined. I just use the ‘Alt-Enter’ in IntelliJ to let 
it create the method in both interface and Fake object implementation. Also note that I still 
use the ordinary ‘storage’ for player ID etc; I only strangle one service at a time! 



In the Fake implementation I make something that will break the test just to verify that it is the 
proper code that is called: 

 

The code fails – to prove that the room was retrieved from the Cave service, not from the 
original cave storage. 

 

Conclusion at this point 
The main point is that we have now established the “chain of objects” that form the basis for 
the real strangling process: Cave interacts with StrangledPlayerServant interacts with 
FakeCaveService (and the old CaveStorage for the other services). 

The new ‘StrangledPlayerServant’ can now gradually be implemented by adding more and 
more methods that contact the CaveService instead of the CaveStorage; and gradually just 
copying code (that is relevant for Rooms and only that) from my FakeCaveStorage into the 
FakeCaveService in a lock step manner. 

Once all room related methods are working; you can then create connector tests for the 
CaveServiceConnector, that is, out-of-process tests that use TestContainer to create a real 
REST based CaveService, and then develop the code of the ‘RealCaveService implements 
CaveServiceConnector’ – that uses HTTP calls to query and update the underlying cave 
service. 



A few observations 
I quickly found that making the fake service use other room descriptions than the original 
ones made it much more obvious that my strangled player servant was fetching from the 
wrong service, so I ended up with 

 

Which on second thoughts are a bit macabre. 

Also I later realized that I could circumvent the CPF system by reusing the TestDoubleed 
factory ala: 

 


