
Software Architecture

in Practice

Our Mandatory Case

TeleMed

Motivation

• “Software architecture is the ability to draw 7 boxes and

connect them with lines…” From ‘SA@Work’ interview with architect…

• My strong opinion: No, it is not just that!

• Why?

– Because many central architectural quality attributes (like

performance, security, modifiability) hinges on specific

decisions made at individual source code line level

CS@AU Henrik Bærbak Christensen 2

Motivation

• Therefore: You will see code and work with code 

CS@AU Henrik Bærbak Christensen 3

TeleMed

Intro to our Case Study system

Case - Challenges

• Demographic challenges

– 2009: 70% of public health expenditure goes

to chronic diseases

– 2040: 100% more elderly

• Geographical challenges

– Larger, fewer hospitals

– Fewer general practitioners

• Leads to a need for tele medical solutions

– ICT-supported healthcare services where some of the people

participating in service delivery are not co-located with the

receiver of the service

– (Our research: Net4Care project)
CS@AU Henrik Bærbak Christensen 5

Vision

• Vision

– Replace out-patient visits by

measurements made by

patients in their home

– Move data from home to regional/national storage so all health

care personal can view them...

• Motivation

– Reduce out-patient visits

• Better quality of life

• Cost savings

• Better traceability and visibility

CS@AU Henrik Bærbak Christensen 6

Use case 1

1) Inger measures her BP
using her TeleMed terminal

2) BP measurement stored
as HL7 document

CS@AU Henrik Bærbak Christensen 7

Use case 2

1) GP queries last month’s BP
measurements for Inger using
web browser

2) Query for all BP documents
associated with Inger

CS@AU Henrik Bærbak Christensen 8

(What is XDS)

• Cross-Enterprise Document Sharing:

– One Registry + Multiple Repositories

– Repository: Stores clinical documents

• (id, document) pairs

– Registry: Stores metadata with document id

• Metadata (cpr, timeinterval, physician, measurement type,...)

• Id of associate document and its repository

• Think

– Registry = Google (index but no data)

– Repository = Webserver (data but no index)

CS@AU Henrik Bærbak Christensen 9

(What is HL7)

• HL7 is a standard (complex!) for clinical

information storage and exchange.

– Version 3 loves XML!

• Our version: Real version:

CS@AU Henrik Bærbak Christensen 10

• Start a server

– gradle serverHttp

• Send an obs.

– gradle homeHttp

• -Psys=120 –Pdia=77 –Pid=pid17

• GP review in browser

– http://localhost:4567/bp/pid01

Demo 1

Use case 1

Use case 2

CS@AU Henrik Bærbak Christensen 11

Demo 2

• Can talk remotely

– Fire up a new machine,

note its IP

– gradle homeHttp –Dhost=10.11.96.127

ifconfig ens33

CS@AU Henrik Bærbak Christensen12

Demo 3

• Flexibility through Dependency Injection of delegates…

• The default variant is an ‘in-memory database’

– Aka: ‘Fake Object test double’

• Let us persist stuff, so restarting the server does not

erase all patient data 

– A real XDS (pain and agony)

– Let us try a document based NoSQL database engine:

MongoDB

CS@AU Henrik Bærbak Christensen 13

Demo 3

• Start a MongoDB

– Option A: download lubuntu linux, create ISO image, create and

install a new linux (virtual) machine, start it, download and install

mongodb, note its hostname/ip address (1.5 hours)

– Option B: Issue a single Docker command  (20 secs)

• docker run –d --name db0 –p 27017:27017 mongo

• Docker is a light-weight virtual machine monitor

– Ala ‘VMWare Workstation as linux command line’

– We will return to virtualization in next course…

CS@AU Henrik Bærbak Christensen 14

Demo 3

• Start server with db

– gradle serverHttp -Pdb=localhost

• Upload a few blood pressures

• Verify contents in Mongo

– docker exec –ti db0 mongo

– And fire a few weird MongoDB

console commands 

– MongoDb will be an example

system in the next course…

CS@AU Henrik Bærbak Christensen 15

Demo3

• And ... Tada!

• Measurements survive a server shutdown and restart 

CS@AU Henrik Bærbak Christensen 16

TeleMed Architecture

Views

Thanks to former SAiP students!

CC View

• Elements

– The four standalone services by name

• Relations

– Main protocol name and roles

CS@AU Henrik Bærbak Christensen 18

Allocation View

• Elements

– The machines and their deployed software units

• Relations

– The network and

interfaces

CS@AU Henrik Bærbak Christensen 19

Module View

• Elements

– Interfaces and

implementing classes

• Relations

– Associations etc.

CS@AU Henrik Bærbak Christensen 20

Getting TeleMed

TM Skeletal system

• TM is on Bitbucket.org

– bitbucket.org/henrikbaerbak/broker

• … in

– folder ‘demo’ 

– branch ‘saip’ !!!

– Fork it into a private repository

– Or clone it, and reset git origin

– Or just get the ZIP and use whatever SCM you like in the group…

CS@AU Henrik Bærbak Christensen 22

https://bitbucket.org/henrikbaerbak/broker

More getting started…

• Read the ‘README-SAIP.md’ in root folder…

– Tutorial on how to run

• Read ‘Tools’ web page from the blackboard course

pages…

CS@AU Henrik Bærbak Christensen 23

Toolchain

Edit, Compile, Debug,

throw something at the cat…

CS@AU Henrik Bærbak Christensen 24

Tool Chain

• Academia generally sticks to the Java world

– It is generally open source and free of charge!

• TM tool chain

– Java 8+, Gradle 7+, Junit, IntelliJ, Git

• And Docker, MongoDB, JMeter, influx, Graphene, …

• Installation options – Follow the ‘tools’ web page

– A) Install it all on your machine OR

– B) Get hold of VMWare Workstation and Mx

• You can get a 1 year license for the full workstation as AU student

CS@AU Henrik Bærbak Christensen 25

Mx

• “Mx for some x”

• Lubunutu Minimal desktop

• Ubuntu but

– Much smaller

– Pretty ‘raw’

CS@AU Henrik Bærbak Christensen 26

Getting Started

• Getting TeleMed up and running

– Start ‘IntelliJ’ and choose ‘Open’, browse to the ‘broker’ folder

and click on the gradle icon.

– The TeleMed code base is in the ‘demo’ folder

• Standard maven/gradle folder structure for Java

– Main/java = production code

– Test/java = test code

• Learning test

– Review ‘TestStory1’ in telemed.scenario in test folder!

CS@AU Henrik Bærbak Christensen 27

TestStory1

CS@AU Henrik Bærbak Christensen 28

IDE

• IntelliJ

– Powertool, but

• It is like pilot’ing the Airbus 320 

– One zillion handles to crank

• Ask at forum, review my guides, google

– https://baerbak.cs.au.dk/c/tutorial/intellij-gradle.html

– Tools page

CS@AU Henrik Bærbak Christensen 29

https://baerbak.cs.au.dk/c/tutorial/intellij-gradle.html

Architecture Prerequisites

Or – what I assume that you already

know from the architect’s toolbox…

Dependency Injection

• I have written a book on Flexibility

• Program to interface

– Role is expressed by interface

• Favor Object Composition

– Small services collaborate to form whole

• Dependency injection

– The services you collaborate with are provided to you (injected)

CS@AU Henrik Bærbak Christensen 31

Example

• TeleMed : Role of a full tele medicine system/server

• XDSBackend: Role of an XDS database system

• Xds is injected into the telemed

I can configure any suitable
variant of the system by

selecting the right
implementations of roles to

inject!

CS@AU Henrik Bærbak Christensen 32

The Compositional Principles

• Encapsulate what varies

– Responsibilities that may vary are encapsulated in a Role

• Program to interface

– Role is expressed by interface

• Favor Object Composition

– Fine-grained roles collaborate to form whole

• This design thinking naturally leads to Design Patterns

• Basically the SOLID principles in operational format…

CS@AU Henrik Bærbak Christensen 33

Example

• The ‘Storage’ role

– Responsibilities:

• To store patient’s blood pressure measurement

• To fetch sets of measurements

• Program to interface: Interface XDSBackend

• Object Composition:

– Instead of TeleMed object itself issuing, say, SQL statements, it

delegates to its XDSBackend instance (injected) to perform its

store and fetch operations

CS@AU Henrik Bærbak Christensen 34

Example

CS@AU Henrik Bærbak Christensen 35

And…

• I can implement an XDSBackend by

– Not using a real XDS storage system but

• MongoDB

– Because it is NoSQL database and it is part of our curriculum…

CS@AU Henrik Bærbak Christensen 36

Test Doubles

• I have written a book on Reliability

• Test Doubles

– Replacements for real

‘depended-on units’ that are under test

control

• Test cases in JUnit

– Inject test doubles instead of ‘real’ units to ease and control

testing

CS@AU Henrik Bærbak Christensen 37

Example

• XDSBackend: Role of an XDS database system

• FakeObjectXDSDatabase: A fake test double

– No persistence, all in-memory!

I can test TeleMed code
without starting a real XDS
database server; it is much
faster and initial state is
well-defined = empty

database

CS@AU Henrik Bærbak Christensen 38

Test Doubles

• Several kinds of test doubles exists (subtypes):
– Stub: Get indirect input under control

– Spy: Get indirect output under control

• to validate that UUT use the proper protocol

– count method calls, ensure proper call sequence

– Mock: A spy with fail fast property

• Frameworks exists that test code can ‘program’ mocks without every
coding them in the native language

• Fail fast: fail on first breaking of protocol

– Fake: A lightweight but realistic double

• when the UUT-DOU interaction is slow and tedious

• when the Double interaction is not the purpose of test

Henrik Bærbak Christensen 39CS, AU

Broker

The Central Distribution Pattern

Distributed Computing

• I have written Flexible, Reliable,

Distributed Software…

– leanpub.com/frds

– Costs ~12$

• Core contents:

– The Broker pattern

– REST based protocol

• Will be curriculum later in the course

CS@AU Henrik Bærbak Christensen 41

FRDS

• Broker

CS@AU Henrik Bærbak Christensen 42

Broker

• Example

– TeleMed object is on machine ‘server’

– On client we want to call

• teleMed.processAndStore(myBloodPressure);

• But networks only have

– send(address, byte[]);

– byte[] receive();

CS@AU Henrik Bærbak Christensen 43

Client Side Broker

• Broker dynamics on Client side

– ClientProxy:

• Implements TeleMed interface

• Convert every call into requests to the Requestor

– Requestor:

• Does marshalling = convert data to byte array format

– Typically JSON or XML

– ClientRequestHandler

• Binds to the OS and particular

network protocol

– Sockets, HTTP, Messaging

• Does the ‘send(payload) and

blocks until answer returned

CS@AU Henrik Bærbak Christensen 44

Server Side Broker

• Broker dynamics on Server side

– ServerRequestHandler:

• Binds to the OS and network protocol

• Receives payload from ClientRequestHandler

– Invoker:

• Demarshalls byte[] into parameters

• Dispatches to proper method and

proper servant object

– Servant:

• Implements TeleMed interface

• The real implementation!

CS@AU Henrik Bærbak Christensen 45

Why all the trouble?

• Now we can configure our own Broker system

• A HTTP based client

• And HTTP webserver based server

• (See the Broker code (‘master’ branch) for a socket

based variant)
CS@AU Henrik Bærbak Christensen 46

And Later

• A RabbitMQ based IPC layer

– Just implement the two roles

• ClientRequestHandler

• ServerRequestHandler

• … using RabbitMQ’s RPC technique

• Messaging is curriculum later this year…

CS@AU Henrik Bærbak Christensen 47

Unit Testing Distribution!

• Why code the broker myself?

• One big advantage:

– Test doubles

– Now single VM

system!

CS@AU Henrik Bærbak Christensen 48

Unit Testing

• Or – using UML architecture:

CS@AU Henrik Bærbak Christensen 49

Mandatory 1

Intro to our Case Study system

Exercise 1

• Goal:

– Get yourself started with the TeleMed system

• Dig into the code base, understand the Broker

– Do a little bit of View based documentation

• CC and Deployment views

• Of the XDS part

– Get to know your

group mates 

CS@AU Henrik Bærbak Christensen 51

Digging in...

• Where to start?

– Lots of code, many variants

• Learning tests!

– Demo/src/test TestScenario1.java

• Manual tests!

– Review README-SAIP and build.gradle

CS@AU Henrik Bærbak Christensen 52

Provided:

• TeleMed report template

– LaTeX 

• But don’t go there if you do not

know LaTeX !!!

• Find the link on the exercise page!

• Remember timeboxing!

– Struggle with an issue for one hour

then raise the white flag
• That is, ask team members, ask

me on forum

CS@AU Henrik Bærbak Christensen 53

No, you are not stupid!

Use IntelliJ for Digging Code

Review the Docs

• Hit the ‘Ctrl-Q’ over an item, to see the JavaDocs

CS@AU Henrik Bærbak Christensen 55

Jump to Declaration

• Just hit ‘ctrl-b’ when cursor in any identifier to jump to

declaration

CS@AU Henrik Bærbak Christensen 56

Find Anything

• Hit ‘ctrl-n’ and begin typing to find stuff quickly

CS@AU Henrik Bærbak Christensen 57

