
Software Engineering

and Architecture

Role, Responsibility, Behavior, Protocol



More than a decade of OO teaching

• I was deeply rooted in Scandinavian tradition of Object-
Orientation:
– Kristen Nygaard & Ole-Johan Dahl: Simula

– Ole Lehrmann Madsen et al.: BETA

• ñA program execution is viewed as a physical model 
simulating the behaviour of either a real or 

imaginary part of the world.ò

• But something was missing...
– Design patterns and frameworks are not simulating the 

world...

– My designs tended to cluster “Blobs” and was hard to 
maintain.

– How does it help me structure the GUI?

CS@AU Henrik Bærbak Christensen 2



What do people say about objects?

CS@AU Henrik Bærbak Christensen 3



Perspectives

• Language centric perspective:

• Object = Data + Actions

• Model centric perspective:

• Object = Model element in domain

• Responsibility centric perspective:

• Object = Responsible for providing service in community 

of interacting objects

CS@AU Henrik Bærbak Christensen 4



Language-centric



Focus

• Language centric focus

– object = fields + methods

– looking at the concrete “building blocks”

– language features are emphasized

– editor view / static

CS@AU Henrik Bærbak Christensen 6



Model-centric



Focus

• Model centric focus

– focus on concepts and relations (static!)

• generalization, association, composition

– problem domain modeling

– object = part of model

– simulation (Kay/Nygaard)

CS@AU Henrik Bærbak Christensen 8



One definition of OO

• Object Orientation

– A program execution is viewed as a physical model simulating 

the behaviour of either a real or imaginary part of the world.

– [Madsen, Møller-Pedersen, Nygaaard 1993]

• Computation as simulation.

• Kristen Nygaard and Ove Johan-Dahl worked

indeed in writing simulation software !

CS@AU Henrik Bærbak Christensen 9



Consequences

• This model-centric perspective results in

– Strong emphasis on “modelling real world”

– Strong emphasis on model elements and relations

Element

Relation

Bass’ definition:

The software architecture of a computing 

system is the structures of the system, which 

comprise software elements, the externally 

visible properties of those elements, and the 

relationships among them.

CS@AU Henrik Bærbak Christensen 10



Examples

• Real world

– Examples:

• My particular Fujitsu laptop computer (phenomena)

• The concept “laptop”

• IT world

– Examples:

• The PayStationImpl class (concept)

• The PayStationImpl object that ran last week (phenomena)

Phenomena Concepts

object class

CS@AU Henrik Bærbak Christensen 11



System design as translation

Problem specific

concepts

Phenomena

Relations

Realized concepts

and relations

Objects

abstraction abstraction

translation

(modellering)

Domain

(”real world”)

Model

(IT system)

CS@AU Henrik Bærbak Christensen 12



Translation support

• The strong point in OO is the language support for these 

aspects of human every day life.

– phenomena Č object

– concept Č class

– generalization Č superclass

– association Č object reference

– aggregation Č object reference (or inner class)

CS@AU Henrik Bærbak Christensen 13



Simulation

• The definition mentions simulation

– A program execution is viewed as a physical model simulating 

the behavior of either a real or imaginary part of the world.

• Simulation means “do something” J

– Objects have methods

– Objects interact by invoking methods on each other.

– But – where do the inspiration for methods come from?

CS@AU Henrik Bærbak Christensen 14



Simulation

• Most real world objects do not exhibit any interesting 

behavior

– a seat in a plane does not know who reserved it

– a backgammon checker does not know how to move nor which 

position it has on the board

• Here we usually assign extra meaning

– Animistic: attribution of conscious life to objects in and 

phenomena of nature or to inanimate objects

CS@AU Henrik Bærbak Christensen 15



Example

• The well worn example of an Account class.

• Before IT an account was simply lines in a book and an 

understanding in the head of the banker.

• An account could not add interest !

• A human banker had to do that using his mathematical and business 

skills.

• But ïthe IT account could be smarter ! The computerized account 

acts like in a Disney movie J

– account.addInterest();

CS@AU Henrik Bærbak Christensen 16



Implications

• (Language) Model perspective:
– A) Identify landscape of concepts 

– B) Distribute behavior over this landscape

• Guidelines:
– A) Problem domain concepts ĔObjects

– B) “Animate” objects / “Expert pattern”

• Keep behavior with the data

– But - an account that can add interest to itself ???

• Analysis
– Problem domain concepts only fraction of full system

• database issues, architectural issues, GUI, networking, ...

– Behavior that does not belong to a domain concept?

CS@AU Henrik Bærbak Christensen 17



Example: SkyCave

• From my Microservice and DevOps course

– Domain model: 

• Three Concepts

– Implementation model:

• 94 classes

• Patterns, dep. injection,

network, databases,

caching, availability,

performance, …

CS@AU Henrik Bærbak Christensen 18



Who/What

• In other words: Who / What cycle

– Who: the objects comes first

– What: the behaviour comes second

• Define the classes, next define their methods

– Clearly would not work ‘by the letter’ in SkyCave!

CS@AU Henrik Bærbak Christensen 19



Responsibility-centric



Focus

• Responsibility centric focus

– Role, responsibility, and collaboration

– Object = provider of service in community

– Leads to strong behavioral focus

– CRC cards (Beck, Wirfs-Brock)

CS@AU Henrik Bærbak Christensen 21



Another Definition

• Another definition:

• An object-oriented program is structured as a 
community of interacting agents called objects. Each 

object has a role to play. Each object provides a service
or performs an action that is used by other members of 

the community.
– Budd 2002

• Shifting focus
– away from “model of real world”

– towards “community”, “interaction”, and “service”

CS@AU Henrik Bærbak Christensen 22



Service

• Budd’s definition is more skewed towards the 

functionality of the system.

• At the end of the day, software pays the bill by 

providing functionality that the users need, not by 

being a nice model of the world!

• Services are what developers get paid to create!

CS@AU Henrik Bærbak Christensen 23



What/Who

• Timothy Budd:

• ñWhy begin the design process with an analysis of 

behavior? The simple answer is that the behavior of a 

system is usually understood long before any other 

aspects.ò

• What / Who cycle

– What: identify behaviour / responsibility Ĕ roles

– Who: identify objects that may play the roles

• or even invent objects to serve roles only

– Larman “Pure fabrication”; 

CS@AU Henrik Bærbak Christensen 24



Implications

• Responsibility perspective:

– A) Analyze behavior (what?) 

– B) Assign objects (who?)

• Guidelines:

– A) Behavior abstracted Ĕ landscape of responsibilities

– B) Implement responsibilities in objects

• Analysis

– Resemble human organizations – often roles are invented

– Still need to define the objects J

• That is, the person(s) to fill the role

CS@AU Henrik Bærbak Christensen 25



The Central Concepts

A strong mind-set for 

designing flexible software

“Theory of Flexible Designs”



How people organize work!

• The central concepts:

– Behaviour: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher”

– Protocol: Convention detailing the expected sequence of 

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”

CS@AU Henrik Bærbak Christensen 27



It is all Roles and Protocol

• Any complex human organization relies completely on 

each person understanding roles and protocols

– If I get hospitalized, I understand the roles of patient, nurses, and 

physicians

– CEOs, managers, software developers, architects, testers, sales 

people, …

– Hardship of marriage: finding the proper roles and protocols J

– Cultural clashes: Hindu programmer and lunch story

CS@AU Henrik Bærbak Christensen 28



Roles decouples

• The primary point of roles:

• It provides a higher abstraction than that of the 

individual person

• I know my responsibilities and the protocol once I am 

assigned a known role

• I can collaborate efficiently with others once I know their 

roles

CS@AU Henrik Bærbak Christensen 29



Many-to-many relation

• Big company

– One person is manager, one software architect, two lead 

developers, and ten software developers

• Small company

– Same person is manager, software architect, lead and software 

programmer J

• That is: One individual may server many roles

• Henrik: Teacher, researcher, tax payer, company owner, 

tourist, father, husband, é

CS@AU Henrik Bærbak Christensen 30



Many-to-many relation

• Hospital

– Nurses attend the patients

– And different persons serve the role during shifts

• That is: One role may be served by many persons

CS@AU Henrik Bærbak Christensen 31



Role concept

• The role concept allows us to use either approach 

(who/what or what/who) because “what” can be 

expressed as roles.

Element

Relation

Role

Role makes 

service a first-

class citizen of 

our design 

vocabulary

CS@AU Henrik Bærbak Christensen 32



Roles are invented

• Roles are invented by need. 

• A pre-school kindergarten invented a Flyer role whose 

responsibility it was to ‘catch’ all interruptions to make the 

daily work more fluent for the ‘non.-flyer’ pedagogues.

CS@AU Henrik Bærbak Christensen 33



Enough Academic B…….

What should I do when designing???



Software as Organizations

• The proposal

– Think software design in terms of 

• The responsibilities to be served

• Group then into cohesive roles

• And define their protocols, how are they going to collaborate

• That is: 

• Design software as an Organization

CS@AU Henrik Bærbak Christensen 35



Super simple example

• The Pay station

• Now, one responsibility has been put into another role: 

the RateStrategy.

CS@AU Henrik Bærbak Christensen 36



Another Example

• HotCiv

– Game: 

• Role: Is responsible for overall game mechanics (= coordinator/manager!)

– Aging, production, turn-taking, …

• Collaborates with lots of other roles

– Unit, City (= specialists)

• Role: Primary state holders + simple, local, state changes

– Owner, changeOwner, …

– (World)

• Role: Primary state holder of game world + simple state changes

– WinnerStrategy (= super-specialist J)

• Role: Is responsible for calculating who has won

– Access information from other roles to do the calculation

– WorldLayoutStrategy
• Role: Is responsible for creating a world

CS@AU Henrik Bærbak Christensen 37



Yet Another Example

• SkyCave

– Massive multiplayer on-line exploration experience

• (Some of the many) Roles:

– Cave, Player, Room

• Domain abstractions

– Player with name may move in rooms in cave, and create new rooms to share with 

other players

– Broker
• Responsible for remote method calls (actually 6 roles!)

– CaveStorage

• Responsible for persisting rooms and players

– SubscriptionService

• Responsible for authenticating player login

CS@AU Henrik Bærbak Christensen 38



Programming Mechanics

• Use interface to define a role

– Methods embody the responsibilities

– (the protocol must be understood in the design)

• Still lack programming constructs to describe these L

• Classes implementing an interface allow objects to be 

instantiated to play the roles

• (Simple roles with no need for variability – just use a 

class)

– Typical example is ”records” = dump data containers
CS@AU Henrik Bærbak Christensen 39



Role – Object

Why difference does it make?



Where is the difference?

• What is the point?

– I associate responsibilities with roles?

– I associate responsibilities with concepts (classes)?

• At first sight there seems to be none...

• Shalloway and Trott has a nice example of the 

difference...

CS@AU Henrik Bærbak Christensen 41



The difference

• Umbrella concept

– metal rod aggregate spikes associated with linen

• Umbrella role

– keeps me dry when it is raining

?

CS@AU Henrik Bærbak Christensen 42



Umbrella again...

• class Car extends Umbrella ?

• class Umbrella extends Car ?

• class Car implements Umbrella

NONSENSE!

More sensible

CS@AU Henrik Bærbak Christensen 43



Another Example



HotGammon

• Backgammon 

requirements:

– Offer GUI for two players

– Guaranty proper play

• Variants

– new rules for which moves 

are legal

– how many moves you can 

make per turn

– how the board is initially set 

up

CS@AU Henrik Bærbak Christensen 45



Same challenge – different designs

Model perspective: Responsibility perspective:

CS@AU Henrik Bærbak Christensen 46



Who is responsible for validating moves?

Model perspective: Responsibility perspective:

What is the cost of altering algorithm to 

compute if move is valid?

How to change it at run-time?

CS@AU Henrik Bærbak Christensen 47



Your Example J



HotCiv

• Model perspective

– Game, City, Unit, Player, World of Tiles

• That is it – these are all the concepts of the domain

• Which should then have all behavior ïall methods

• Responsibility perspective

– Game, City, Unit, Player, World of Tiles

• With rather abstract and limited behavior

– WinnerStrategy, WorldLayoutStrategy, AgingStrategy, Factory, 

ZetaState, é

• Which encapsulate specific responsibilities in well defined rolesé

CS@AU Henrik Bærbak Christensen 49



Summary



Summary

• The central concepts:

– Behavior: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher”

– Protocol: Convention detailing the expected sequence of 

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”

CS@AU Henrik Bærbak Christensen 51



Perspectives

• Three different perspectives on OO

– Language: Important because code is basically only 

understandable in this perspective

– Model: Important because it gives us good inspiration for 

organizing the domain code

– Responsibility: Important because it allows us to build highly 

flexible software with low coupling and high cohesion

• They do not have to be in conflict ïthey build upon each 

other...

CS@AU Henrik Bærbak Christensen 52



Score Board?

• The battle of the schools ?

– Scandinavian versus American

• Winners or loosers?

– Hm… Rather they complement each other

providing a stronger design language…

CS@AU Henrik Bærbak Christensen 53



Summary

• Design in terms of what roles and responsibilities there 

are in a system.

• Express these as interfaces with appropriate additional 

documentation.

• Implement the roles by concrete classes.

• Roles should encapsulate points of variability

CS@AU Henrik Bærbak Christensen 54


