
SWEA Iteration 6: Compositional Design
and Test Spy

<<Group name>>
Computer Science, University of Aarhus

8200 Århus N, Denmark
<<Names>>

<<Date>>

1 Private Interfaces and ISP

1.1 Private Interface Design

[Describe your improved design using private interfaces to handle internal
mutation of domain abstractions Game, Card, and Hero]

1.2 Refactoring

[Show code before the refactoring; and next the refactored code based upon
private interfaces, for the Game domain abstraction.]

2 EtaStone

2.1 Design and UML

[Sketch a compositional design using UML for EtaStone which uses a role in-
terface]

[INCLUDE UML DIAGRAM HERE - A GOOD PICTURE OF HANDRAWN
IS OK.]

[Argue for a single Role Interface that covers both Hero Powers as well as
Card Effects.]

2.2 Unit Testing using Test Spy

[Include test code for ensuring correct behavior of the effect of one of the EtaS-
tone cards]

[Include relevant code fragments of your Test Spy to support the above test
case]

[Argue that you are doing Unit testing and not Integration testing in the
above shown code fragments]

1



3 SemiStone

3.1 Configuration Table

[Fill in Table 1., similar to the table from FRS §17.2]

Table 1: HotStone configurations

Variability points
Product Mana Prod. Winning . . .
AlphaStone 3 every round Findus/round 4 -
BetaStone +1 pr round Defeat opponent -
GammaStone - - -
. . . - -
SemiStone - - -

3.2 SemiStone Code Configuration

The SemiStone variant is configured in our code like this . . .

[Provide production code fragment(s) that show the code that configure the
GameImpl for the SemiStone variant]

The design of the HotStone system, with emphasis on the SemiStone vari-
ant, is shown by the following UML diagram:

[Include the UML diagram of all interfaces and classes in HotStone related
to variant handling—but show only the associations between the SemiStone
abstract factory implementation to its products, not all the other associations
between concrete factory classes.]

4 Parametric ’getWinner()’

The method getWinner() in GameImpl would look like this if a purely paramet-
ric design had been employed as variant handling technique in the HotStone
code:

[Provide (pseudo) code fragment(s) the show how a parametric design could
be implemented]

5 Backlog

• . . .

• . . .

2


