
Uncle Henrik’s Clean Code Principles

Henrik Bærbak Christensen

Status: Draft / Revision 19.04

August 7, 2019

Chapter

1
Clean Code
In this document, I will outline some additional clean code principles beyond those
of Martin (2009, Chapter 3) that I will argue improve code maintainability.

1.1 Do the Same Thing, the Same Way

Humans are not good at remembering large sets of random information. But if the in-
formation follows a template or a recognizable format or structure, it becomes much
easier: Once the template is memorized, it can be used to create/understand a lot of
examples.

1.1.1 The Problem

One war story of not using the standard template stems from a C project I was shortly
enrolled in. The C standard library has a method to copy the contents of one string
into another, strcpy, so you get a copy of the first string.

1 char ∗ s t rcpy (char ∗dest , char ∗ s r c)

(Java Strings are immutable objects, so Java does not have a similar method, as it does
the copy ’behind the scenes’.)

Note that the type of the two parameters are the same (read ’char *’ as something
similar to String in java), but the important bit of information is that the destination
string is the first argument, while the source string is the second one. After having
coded using this function literally thousands of times, this template: destination is
first parameter, source is second; was of course carved into my brain.

Now, I was asked to help out in a project in which my collegue had coded his own
String implementation, DSEString, and of course provided

1 void s t rcpy (DSEString s1 , DSEString s2) { . . . }

2

Do the Same Thing, the Same Way z 3

which was a method to copy the contents of one string into another. So I began
writing a simple algorithm, using this function. It did not work to my surprise. I
read the code again and again without being able to spot the problem, and finally
had to debug for quite some time. It turned out—my collegue had reversed the order of
the parameters: the source string was the first parameter, and the destination was the second,
in his strcpy() method! The same thing, done in a different way.

A more recent example from the HotCiv system is the following implementation of
moveUnit(Position from, Position to) that some students of mine made years ago.

The have introduced two Map structures for handling tiles (World) and for handling
units (unitMap):

1 public c l a s s GameImpl implements Game {
2 private Map<Posi t ion , T i le > world = new HashMap< >() ;
3 private Map<Posi t ion , UnitImpl > unitMap = new HashMap< >() ;
4 . . .

Even here, you will notice that the naming of instance variables are not “same naming
for same things”: Why not call them “tileMap” and “unitMap”? Why the Map suffix
on one of the instance variables and not the other?

Then the first part of the implementation goes:

1 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
2 i f (unitMap . get (from) != null &&
3 ! world . get (to) . getTypeStr ing () . equals (GameConstants .OCEANS) &&
4 unitMap . get (from) . getOwner () == Player .RED &&
5 ! g e t T i l e A t (to) . getTypeStr ing ()
6 . equals (GameConstants .MOUNTAINS) &&
7 getUnitAt (from) . getMoveCount () >= 1 &&
8 Math . abs (from . getColumn () − to . getColumn ()) <= 1 &&
9 Math . abs (from . getRow () − to . getRow ()) <= 1 &&

10 ! to . equals (from)) {
11 . . .

As you know, Game has accessor methods for getting a unit at a specific position:
getUnitAt(p) which is used in line 6. But the accessor is not used consequently, in
line 2 a direct call into the data structure is used instead. So - two different ways of
doing the same thing is used.

This is problematic - first because it makes the code less analyzable, the reader has
to understand and know two different ways of getting units, and here actually know
that they are algorithmic identical. Second, if we want to change the data structure
used for storing units (say, into a matrix), the code will fail: the places in which
getUnitAt(p) is used will work correctly but the direct accesses will of course not.
This leads to many more places to make changes, lowering the changeability qual-
ity (Christensen 2010, Chapter 3).

So - this principle is often closely related to uncle Bob’s “One Level of Abstraction”:
The moveUnit() method should keep its code at a higher level of abstraction than
direct data structure access, namely only using accessor methods, shielding it from
changes at the lower level of abstraction, the data structure choice.

4 z Clean Code

1.1.2 The Solution

Cultivate a team and personal culture of sticking to an agreed schema, template, way
of doing things.

In internal code, refactor the code as you spot any “same thing in a different way”
code. In external code, say for a library that many people are depending upon, this is
much more troublesome as any change you may make will affect a lot of people.

In the concrete HotCiv code above, I would change all direct datastructure accesses into
accessor method calls so all accessing is done the same way, like

1 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
2 i f (getUnitAt (from) != null &&
3 ! g e t T i l e A t (to) . getTypeStr ing () . equals (GameConstants .OCEANS) &&
4 getUnitAt (from) . getOwner () == Player .RED &&
5 ! g e t T i l e A t (to) . getTypeStr ing ()
6 . equals (GameConstants .MOUNTAINS) &&
7 getUnitAt (from) . getMoveCount () >= 1 &&
8 Math . abs (from . getColumn () − to . getColumn ()) <= 1 &&
9 Math . abs (from . getRow () − to . getRow ()) <= 1 &&

10 ! to . equals (from)) {
11 . . .

1.2 Name Boolean Expressions

Some programmers may be good at overviewing complex boolean expressions with
many NOT, AND, and OR operators. I am not and from helping out my students on
countless occassions I guess I am not the only one.

1.2.1 The Problem

Maintainability is a measure of how easy it is to modify code, and a central aspect
of that is analyzability (Christensen 2010, Chapter 3): my ability to understand the
behavior of the code correctly and easily by simply reading it. Have a look at the
moveRedUnit() method’s many boolean expressions—it takes quite a while to read
and fully grasp. And it is even of the simple variant, with only AND and NOT oper-
ators, no parentheses nor OR operators.

1.2.2 The Solution

My suggesting is to give meaningfull names to logically related boolean sub ex-
pressions. This is probably best explained by an example. Again, returning to the
moveRedUnit(), there is a portion of the if-statement that reads:

1 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
2 i f (getUnitAt (from) != null &&
3 . . .
4 Math . abs (from . getColumn () − to . getColumn ()) <= 1 &&
5 Math . abs (from . getRow () − to . getRow ()) <= 1 &&

Name Boolean Expressions z 5

Looking at lines 4–5, what does these two lines express? Well, they express that the
distance we are trying to move a unit is less than or equal to one tile, which is the
requirement of a legal move. So - I will increase analyzability by naming the boolean
expression:

1 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
2 boolean moveDistanceIsOneOrLess =
3 Math . abs (from . getColumn () − to . getColumn ()) <= 1 &&
4 Math . abs (from . getRow () − to . getRow ()) <= 1 ;
5
6 i f (getUnitAt (from) != null &&
7 . . . &&
8 moveDistanceIsOneOrLess &&
9 . . .

Continuing this process with the rest of boolean expressions you may end up with an
if-statement like:

1 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
2 . . .
3
4 i f (existsUnitOnFromTile &&
5 t o T i l e I s V a l i d T e r r a i n &&
6 fromUnitIsMyOwn &&
7 moveCountIsOneOrMore &&
8 moveDistanceIsOneOrLess &&
9 ! toAndFromAreTheSameTile) {

10 . . .

Now, this expression is much closer to the language of the specification of HotCiv: A
move is valid if there is a unit to move, if you move to a valid terrain, if you move
your own unit, and that unit has sufficient moves left, you do not move more than
one tile, etc.

One word of caution: Sometimes I have found myself naming an expression some-
thing like notValidTerrain, i.e. with a not in the variable name. However, then I often
find myself using it in expressions like

1 i f (! notVal idTerra in) { . . . }

Which is profoundly confusing as you figure out what NOT-NOT means. So, keep
the NOT operators out of the named boolean expressions. Generally I like to do the
same thing, the same way so I try to name my boolean expression in a positive/desireable
way: battleWon, attackSucceed, toTileIsValidTerrain, etc., as it will make the NOT
operator stand more clearly out. I find it easier to read

1 i f (f i l e I s O p e n) { /∗ r e a d i t ∗ / }

than

1 i f (! f i l eFa i l edInOpening) { /∗ r e a d i t ∗ / }

It is desirable that the file has been opened so I can read it.

6 z Clean Code

1.3 Bail Out Fast

If and while-statements can be nested to any level without the compiler or java run-
time having problems. However, deep nesting levels are hard to understand and
analyze.

1.3.1 The Problem

Below, the HotCiv code has been rewritten using nested if statements which is an
alternative to using AND operators.

1 i f (unitMap . get (from) != null) {
2 i f (! world . get (to) . getTypeStr ing () . equals (GameConstants .OCEANS)) {
3 i f (unitMap . get (from) . getOwner () == Player .RED) {
4 i f (! g e t T i l e A t (to) . getTypeStr ing ()
5 . equals (GameConstants .MOUNTAINS)) {
6 i f (getUnitAt (from) . getMoveCount () >= 1) {
7 i f (Math . abs (from . getColumn () − to . getColumn ()) <= 1 &&
8 Math . abs (from . getRow () − to . getRow ()) <= 1) {
9 i f (! to . equals (from)) {

10 i f (getUnitAt (to) == null) {
11
12 / / move i s a l l o w e d t o p r o c e e d t o move i t
13 unitMap . put (to , unitMap . get (from)) ;
14 unitMap . put (from , null) ;
15
16 / / d e c r e m e n t move count
17 unitMap . get (to) . decrementMoveCount () ;
18 return true ;
19 } e lse {
20 return f a l s e ;
21 }
22 } e lse {
23 return f a l s e ;
24 }
25 } e lse {
26 return f a l s e ;
27 }
28 } e lse {
29 return f a l s e ;
30 }
31 } e lse {
32 return f a l s e ;
33 }
34 } e lse {
35 return f a l s e ;
36 }
37 } e lse {
38 return f a l s e ;
39 }
40 } e lse {
41 return f a l s e ;
42 }

It suffers from several analyzability issues. First, you have to keep track of how many
previous conditions are already “in effect” when you try to understand at the code at

Bail Out Fast z 7

a given level. Second, finding the right “else” branch to modify code in is somewhat
of a puzzle that you can easily get wrong (the code below is in that respect very
well behaved because they are all just return statements, but consider that you need
to add a statement in the else branch part of the condition about “not moving to
a mountain”—will you hit the right code part?). I have seen people adopting the
convention of putting a remark after the else to remind themselves like:

1 . . .
2 } e lse { / / moving t o a mountain
3 return f a l s e ;
4 }

If you find yourself using such “code crutches” then reconsider!

Finally, visually the “real” algorithmic code creeps more and more to the left side of
the screen which makes me wonder “What does it do there?” Perhaps not much of
an issue, but still. . .

Some old programming languages, notably Pascal, more or less forced you into this
style, as it had no return statement.

1.3.2 The Solution

I prefer this kind of reasoning: “If I can compute an answer early, I will return it early,
and then stop bothering about it in the code that comes next.” If there is no unit on
the ’from’ tile then I know that the move is illegal, and the rest of the code in the
method is irrelevant. I will code to bail out fast.

In our case, I would code it like1:

1 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
2 boolean existUnitOnFrom = getUnitAt (from) != null ;
3 i f (! existUnitOnFrom) return f a l s e ;
4
5 fromUnitIsMyOwn = getUnitAt (from) . getOwner () == getPlayerInTurn () ;
6 i f (! fromUnitIsMyOwn) return f a l s e ;
7
8 . . .
9

10 boolean moveDistanceIsOneOrLess =
11 Math . abs (from . getColumn () − to . getColumn ()) <= 1 &&
12 Math . abs (from . getRow () − to . getRow ()) <= 1 ;
13 i f (! moveDistanceIsOneOrLess) return f a l s e ;
14
15 . . .

This principle also tend to allow me to code the “easy” parts first—the cases where
an answer can be computed easily are at the top of the method, with an immediate
return statement.

Bail out fast also often makes “guarding method calls” unnecessary in the later parts
of the method’s algorithm. For instance, the call to getMoveCount() in the second line
of:

1Note that all boolean expressions are again expressed as desirable properties.

8 z Clean Code

1 boolean moveCountIsOneOrMore =
2 getUnitAt (from) . getMoveCount () >= 1 ;

will throw a null pointer exception in case there is no unit at the ’from’ tile. Thus,
you have to “guard it”, either by yet-another if statement or by boolean short-circuit
evaluation:

1 boolean moveCountIsOneOrMore =
2 getUnitAt (from) != null &&
3 getUnitAt (from) . getMoveCount () >= 1 ;

By bailing out fast, the guard becomes unnecessary, as we already know as this point
that there is a unit on the from tile.

Modern IDEs can help in the refactoring. For instance, IntelliJ allows marking an
expression and then select ’Refactor/Extract/Variable’ to ease the coding effort.

1.4 Arguments in Argument Lists

The last principle is about an issue that I sometimes stumble upon in student code.
Maybe it is due to being novices in doing test-driven development because I can
imagine a thinking along the lines of “Let us make this method work for red player
first, (ongoing TDD work), Ok—it is working so to get it to handle blue player as
well, let us copy it and substitute all occurences of ’red’ with ’blue’.”

1.4.1 The Problem

Consider the following implementation of the HotCiv moveUnit() method:

1 public boolean moveUnit (P o s i t i o n from , P o s i t i o n to) {
2 boolean v ;
3 i f (playerInTurn == Player .RED) {
4 v = moveRedUnit (from , to) ;
5 } e lse
6 v = moveUnitForBluePlayer (from , to) ;
7 return v ;
8 }
9

10 private boolean moveRedUnit (P o s i t i o n from , P o s i t i o n to) {
11 [Long complex implementation here , o f ten r e f e r r i n g to Player .RED]
12 }
13 private boolean moveUnitForBluePlayer (P o s i t i o n from , P o s i t i o n to) {
14 [EXACT COPY of the above method , except a l l occurences of
15 Player .RED has been replaced with PLAYER . BLUE]
16 }

Of course, this is an obvious example of code duplication, and therefore the code
does not obey the “Don’t Repeat Yourself” principle by Martin (2009, Chapter 3). As
argued at length in Christensen (2010, Chapter 7) duplicated code leads to all sorts of
maintainability problem, and I will not repeat them here. Just consider what happens,
when someone requires that the code can handle yellow and green player as well.

Video Tutorial z 9

However, the indicator of the code duplication is in the naming of the methods:
moveRedUnit and moveUnitForBluePlayer. The mentioning of blue and red directly
in the method names indicate that the methods cannot cope with any type of player,
only a specific one. The player color is an argument to a method, but now it appears
in the method’s name.

A similar and even more pronounced example is adding tax to a sales item. Different
countries in EU have different tax rates so a suitable solution is to have the tax rate as
an argument. And you do NOT do that by making a lot of methods

1 public double addTaxOf25Pct (double amount) ;
2 public double addTaxOf20Pct (double amount) ;
3 public double addTaxOf12Pct (double amount) ;
4 . . .

1.4.2 The Solution

Arguments shall not be part of a method’s name, instead put arguments in argument
lists—provide it as a parameter to the method when calling it.

In our moveUnit example we actually do not need the player color parameter in the
argument list at all—the method can of course query it from the unit it is trying to
move.

For the salex tax case, put the argument in the argument list:

1 public double addTax (double amount , double t a x r a t e) ;

And implement a general algorithm.

One exception to this rule are test case methods which are often named to be specific
about parameters and values to highlight the exact test case being defined:

1 @Test
2 public void shouldAllowMoveRedArcherToEmptyPlain () { . . . }
3 @Test
4 public void shouldNotAllowMoveRedArcherToMountain () { . . . }
5 @Test
6 public void shouldAcceptLegionKil lArcher () { . . . }
7 . . .

Hardcoding values is problematic in production code as algorithms are then not gen-
eralized; however test code algorithms must emphasize analyzability (“Evident Test”
and “Evident Data” principles of TDD) and are meant to be a specific test case, not a
general algorithm.

1.5 Video Tutorial

You can find ten video tutorials on my Vimeo account that refactor the HotCiv code
using the principles in this paper as well as applying those of Martin (2009).

1. https://vimeo.com/219059474 Session 1 / Intro

10 z Clean Code

2. https://vimeo.com/220629645 Session 2 / Duplication I

3. https://vimeo.com/220630188 Session 3 / ’If’ cleanup

4. https://vimeo.com/220632096 Session 4 / Duplication II

5. https://vimeo.com/220632562 Session 5 / Remove nesting

6. https://vimeo.com/220632796 Session 6 / One level of abstraction

7. https://vimeo.com/220633134 Session 7 / Commenting

8. https://vimeo.com/220633530 Session 8 / One level of abstraction

9. https://vimeo.com/220634076 Session 9 / Bail out fast

10. https://vimeo.com/234478442 Session 10 / One Level of Abstraction

Bibliography

Christensen, H. B. (2010). Flexible, Reliable Software - Using Agile Development and
Patterns. Chapman & Hall, CRC.

Martin, R. C. (2009). Clean Code - A Handbook of Agile Software Craftsmanship. Pear-
son Education.

11

