
Getting Context Information For Strategies.

Finn Rosenbech Jensen

November 11, 2009

1 The Problem.

Introducing di�erent strategies in HotCiv we often face the problem, that the Concrete Strategy
class needs information from it's Context. Normally we then send the Context class along as
a method parameter to the Concrete Strategy class. But which type should we send along - a
Game or a GameImpl ? And what should we do if neither of these have methods that will
deliver the Concrete Strategy class the information it needs ? On the other hand do the Concrete
Strategy classes really need all the possibilities that a Game o�ers ?

2 An Example.

Lets look at a concrete example. We want to introduce a WinnerStrategy interface which should
have the responsibility of determining who (if anyone) is the winner of a HotCiv game. This
means we want the interface to look something like:

public interface WinnerStrategy {
public Player getWinner();

}

So far so good. Then we have our Concrete Strategy classes. Well how should theAlphaCivWin-
nerStrategy look ? It has to decide whether the game have reached year 3000 BC or not. Hmm
- but Game very conveniently has a getAge() method so we just send our Game along:

public interface WinnerStrategy {
public Player getWinner(Game game);

}

public class AlphaCivWinnerStrategy implements WinnerStrategy {
private �nal int WINNING_AGE = −3000;
@Override

public Player getWinner(Game game) {
if (game.getAge() >= WINNING_AGE)
return Player.RED;

return null;
}

}

1

Getting Context Information For Strategies. 2

That was easy and now for the BetaCivWinnerStrategy. It should just check if a player has
conquered all cities. Okay, we get the Game as a parameter so we just......?? Well, what do we
do ? Game doesn't have a getCities() or getOwners() method.
Now we have a couple of possibilities:

� We could add a getOwners() method to the Game interface.

� But this seems wrong as we start to bloat our Game interface I.e. we add more and
more methods (and thereby responsibilities) to the Game interface. This leads to
lower cohesion and Responsibility Erosion ([1] section 14.5). Besides the only class
using this method is BetaCivWinnerStrategy.

� We could add a getOwners() method to the GameImpl class.

� This does solve the problem. But we would still like only to pass an interface along
as parameter to the getWinner() method, which means that we will have to down-
cast theGame instance to aGameImpl instance in the BetaCivWinnerStrategy.
This would work but having to downcast is annoying and rests on the implicit pre-
condition that GameImpl is the only implementation of Game we will work with.

� Actually we could solve the problem with the Game interface alone. We would have to
iterate over all Positions, for each of them check whether there is a City on it and check
if all cities are owned by the same Player.

� This would de�nitely work but it does seem like a lot of work to get hold of two cities.

Coming to think of it. Passing a Game instance along also is a bit unsatisfying. Why should
these Concrete Strategy classes have the possibility of calling mutator methods likemoveUnit()
or endOfTurn() ? It seems like we have gotten ourselves into yet another �ne design mess....

Computer science is the discipline that believes all problems can be

solved with one more layer of indirection

Dennis De Bruker

3 Private Interface Pattern comes to rescue !

As often is the case when we have a design problem, the solution is to introduce yet another
interface. Here it is actually a design pattern introduced by James Newkirk [2]. We de�ne an
interface to be responsible for �publishing the information� that the di�erent Concrete Strategy

classes need - and nothing more than that. This will look something like:

/** Publishes the methods available for concrete WinnerStrategy classes.
* This is an application of "Private Interface" Pattern.
*/
public interface WinnerStrategyContext {
public int getAge();
public Collection<Player> getOwners();

}

Getting Context Information For Strategies. 3

Now the WinnerStrategy interface will look like:

public interface WinnerStrategy {
public Player getWinner(WinnerStrategyContext context);

}

And our Concrete Strategy implementations will be:

public class AlphaCivWinnerStrategy implements WinnerStrategy {
private �nal int WINNING_AGE = −3000;

@Override

public Player getWinner(WinnerStrategyContext context) {
if (context.getAge() >= WINNING_AGE)
return Player.RED;

return null;
}

}

public class BetaCivWinnerStrategy implements WinnerStrategy {

@Override

public Player getWinner(WinnerContext context) {
Player candidate = null;
for(Player owner: context.getOwners()) {

if (candidate == null)
candidate = owner;

if (owner != candidate)
return null;

}
return candidate;

}
}

This is all quite simple and nice. The only trickery comes when we call the strategy objects in
GameImpl. We can do this by using "Ad hoc" interface implementations I.e the creation of an
anonymous interface implementation exactly at the spot where we need an implementation:

public class GameImpl implements Game {
...
public Player getWinner() {
return _winnerStrategy.getWinner(new WinnerContext() {

public int getAge() {
return GameImpl.this.getAge();

}

Getting Context Information For Strategies. 4

public Collection<Player> getOwners() {
ArrayList<Player> result = new ArrayList<Player>();
result .add(_redCity.getOwner());
result .add(_blueCity.getOwner());
return result;

}
});

}
...

}

As can be seen my GameImpl implementation has a _winnerStrategy attribute of type
WinnerStrategy and furthermore two City attributes called _redCity and _blueCity re-
spectively. Instead of the "on demand" syntactic sugar, we could of course also use a private
inner class attribute implementing WinnerContext.

Considerations.

So what have we achieved by using Private Interface ? Well, we have gotten some advantages:

1. The Concrete Strategy classes are nicely decoupled from Game and GameImpl. I.e. we
have achieved lower coupling.

2. We didn't have to bloat the Game interface or use type checking and down-casting in our
Concrete Strategy classes implementations.

3. The Concrete Strategy classes get exactly the amount of information they need.

But there are also some liabilities

1. We had to introduce yet another interface and we might have to do this for most of our
Strategy Patterns. This will lead to more complexity in the design.

2. The methods in the WinnerStrategyContext interface may be victim to modi�cations
and additions as we get new concrete Winnerstrategy implementations.

� This problem would also be present without the use of Private Interface Pattern. We

could actually argue, that using the pattern exactly pinpoints the place to make these

changes I.e. we have achieved higher cohesion.

4 Interface Segregation Principle comes to rescue !

Private Interface Pattern isn't the only solution to the problem. If we defer from bloating the
Game interface with new methods we can ensure that Concrete Strategy classes don't get access
to mutator methods. How ?

Well of course by introducing yet another interface ;-) This idea is to partition the Game
interface into a mutator and a read-only part (see [1] chapter 19). This can also be seen as an
application of the Interface Segregation Principle. [3] which can be framed in two ways:

Getting Context Information For Strategies. 5

Many client speci�c interfaces are better than one general purpose interface.

Clients should not be forced to depend on interfaces they don't use.

This means that we introduce a new interface holding all the accessor methods of the Game
interface (javadoc comments removed):

public interface GameContext {
public Tile getTile(Position p) ;
public Unit getUnitAt(Position p);
public City getCityAt(Position p);
public Player getPlayerInTurn();
public Player getWinner();
public int getAge();

}

and then let the original Game extend this interface:

public interface Game extends GameContext {
...

}

Now our Concrete Strategy classes can be given parameters of the type GameContext which
hopefully have all the methods needed.

Considerations.

This solution also have it's pros and cons:

1. The Concrete Strategy classes have no access to irrelevant mutator methods likemoveUnit()
and endOfTurn().

2. We only have to introduce one more interface.

But there are also some liabilities

1. In case the GameContext interface shouldn't hold the methods the Concrete Strategy

classes need we might have to use type checking and down-casting.

2. The methods in theGameContext interface may be victim to modi�cations and additions
as we get new concrete Winnerstrategy implementations.

Comparing the solutions we can say that this solution is more �coarse-grained� than the Private
Interface Pattern solution, as we try to satisfy all possible Strategy Pattern classes with only one
interface.

Getting Context Information For Strategies. 6

5 Conclusion.

So all in all will the design pro�t from introducing either of these solutions ? This is di�cult
to answer conclusive and you might very well get di�erent answers from di�erent people. What
you should do is to weight the advantages and liabilities against each other and make up your
own mind based on sound judgment.

"To write a good program you need intelligence, taste and

patience."

Bjarne Stroustrup

Watch out for the right timing. A word of warning may be justi�ed. All these thoughts
and code refactorings belong at step 5 of the TDD rhythm. It's a bad idea trying to introduce
the solutions before we have a working implementation backed up by a suite of tests. We also
are in no real position to judge whether the design improves if we start with introducing the
solutions �up front�.

References

[1] Henrik Bærbak Christensen Flexible, Reliable Software: Design Patterns and Frameworks -

Agile Development. To be published by CRC Press 2010.
http://www.baerbak.com

[2] James Newkirk Private Interface. PLOP'97 proceedings
http://www.objectmentor.com/resources/articles/privateInterface.pdf

[3] Robert C. Martin Interface Segregation Principle.
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

