
Exam Question Examples 2023

Henrik Bærbak Christensen

January 11, 2024

Contents

0.1 Test-driven development. 2

0.2 Test-driven development. 3

0.3 Test-driven Development . 4

0.4 Test-driven development. 5

0.5 Systematic black-box testing. 6

0.6 Systematic black-box testing. 7

0.7 Systematic Black-box Testing . 8

0.8 Variability Management . 9

0.9 Variability Management . 10

0.10 Variability Management. 11

0.11 Variability management . 12

0.12 Test Doubles and unit/integration testing . 13

0.13 Test Doubles and Unit/Integration Testing. 14

0.14 Design patterns . 15

0.15 Design patterns . 16

0.16 Design Patterns . 17

0.17 Design Patterns . 18

0.18 Compositional Design . 19

0.19 Compositional Design . 20

0.20 Frameworks . 21

0.21 Frameworks . 22

0.22 Frameworks . 23

0.23 Clean Code and Refactoring . 24

0.24 Distribution and Broker . 25

0.25 Distribution and Broker . 26

1

0.1 Test-driven development.

The Breakthrough game is played on a standard chess board,
using 16 white and 16 black pawns that are initially arranged
like in the figure on the right.

The rules of movement are simple. White player begins. A
piece may move one square straight or diagonally forward if
that square is empty. A piece, however, may only capture an
opponent piece diagonally. When capturing, the opponent piece
is removed from the board and the player’s piece takes its po-
sition, as you do in chess.

Using a TDD process, the methods covering basic board and
piece storage and turn handling have already been been devel-
oped in a class implementing the Breakthrough interface:� �

1 public i n t e r f a c e Breakthrough {
2 / * * Enumerat ion o f t h e t h r e e t y p e s o f ’ p i e c e s ’ t h a t
3 i s p o s s i b l e on a g i v e n l o c a t i o n on t h e c h e s s b o a r d :
4 b l a c k , whi te , o r no p i e c e * /
5 public s t a t i c enum PieceType { BLACK, WHITE, NONE} ;
6 / * * Enumerat ion o f t h e two t y p e s o f p l a y e r s in t h e game ,
7 e i t h e r w h i t e o r b l a c k * /
8 public s t a t i c enum PlayerType { BLACK, WHITE } ;
9

10 / * * Return t h e t y p e o f p i e c e on a g i v e n (row , column) on
11 t h e c h e s s b o a r d .
12 @return t h e t y p e o f p i e c e on t h e l o c a t i o n . * /
13 public PieceType getPieceAt (i n t row , i n t column) ;
14
15 / * * Return t h e p l a y e r t h a t i s in turn , i . e . a l l o w e d
16 t o move .
17 @return t h e p l a y e r t h a t may move a p i e c e nex t * /
18 public PlayerType getPlayerInTurn () ;
19
20 / * * V a l i d a t e a move from a g i v e n l o c a t i o n (fromRow , fromColumn) t o a
21 new l o c a t i o n (toRow , toColumn) . A move i s i n v a l i d i f you t r y t o
22 move your opponent ’ s p i e c e s o r t h e move d o e s not f o l l o w t h e
23 r u l e s , s e e t h e e x e r c i s e s p e c i f i c a t i o n . PRECONDITION : t h e
24 (row , column) c o o r d i n a t e s a r e v a l i d p o s i t i t i o n s , t h a t i s , a l l
25 be tween (0 . . 7) .
26 @return t r u e i f t h e move i s v a l i d , f a l s e o t h e r w i s e * /
27 public boolean isMoveValid (i n t fromRow , i n t fromColumn ,
28 i n t toRow , i n t toColumn) ;
29
30 }� �

You are asked to start implementing the isMoveValid method using TDD. You can assume
method getPlayerInTurn() and getPieceAt(row,column) are correctly implemented.

You are asked to execute a test-driven development effort to develop the above specification.
You should use terminology, techniques, and tools from the course to:

– Cover steps and TDD principles in two or more initial interations and give examples of
JUnit test case code for them, as well as sketch initial production code.

– Broaden the discussion to include basic definitions, terminology, and techniques in TDD.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

2

0.2 Test-driven development.

Consider the following specification:� �
1 public i n t e r f a c e FanControl {
2 / * * Return t h e f r e q u e n c y o f t h e c o o l i n g f a n g i v e n t h e
3 t e m p e r a t u r e o f a i r and l i q u i d in a c h e m i c a l chamber .
4 The i d e a l l i q u i d t e m p e r a t u r e i s around 75 d e g r e e s .
5
6 The f r e q u e n c y (r e t u r n v a l u e) i s c a l c u l a t e d as f o l l o w s
7 (in o r d e r o f p r e c e d e n c e) :
8
9 i f TempLiquid > 90 r e t u r n 9999 (ALERT)

10 i f TempLiquid > 80 r e t u r n 500 (Max c o o l i n g)
11 i f TempLiquid < 70 r e t u r n 0 (No c o o l i n g)
12 o t h e r w i s e r e t u r n (TempLiquid −70)*50
13
14 The a i r t e m p e r a t u r e may o v e r r u l e t h e a b o v e c a l c u l a t i o n :
15 i f TempAir > 100 r e t u r n 9999
16 i f TempAir > 90 r e t u r n 500
17 * /
18 public i n t fanControl (double TempAir , double TempLiquid) ;
19 }� �

You are asked to execute a test-driven development effort to develop the above specification.
You should use terminology, techniques, and tools from the course to:

– Cover steps and TDD principles in two or more initial interations and give examples of
JUnit test case code for them, as well as sketch initial production code.

– Broaden the discussion to include basic definitions, terminology, and techniques in TDD.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

3

0.3 Test-driven Development

We have been asked to develop a tax calculator which can compute (simplified) Danish tax
for a person. The tax consists of two parts: bottom-bracket tax and labor market contribution (Da:
bundskat og arbejdsmarkedbidrag) which is calculated based upon income, both salary income
and capital income (Da: lønindkomst og kapitalindkomst (dvs. renteindtægter og -udgifter)).

The bottom-bracket (BB) tax is a 15% tax of salary income above a 45.000 Dkr. deduction (Da:
bundfradrag) (i.e., you pay no tax of the ’first’ 45.000 you earn.) You also pay 15% tax of any
positive capital income (i.e. no tax if capital income is negative, but tax on any capital income
above 0).

Example: Hans has salary income = 55.000 and capital income = 10.000, then the BB tax is 15%
of (55.000 - 45.000 + 10.000).

The labor market (LM) tax is an 10% tax of the salary income. However, if the income is from
public benefits (Da: overførselsindkomst, eg. SU, pension, or kontanthjælp), you do not pay
this tax. You do not pay this tax on capital income either.

Example: Bente has a salary income (from a job) = 55.000 and capital income = 10.000, then the
LM tax is 10% of 55.000.

Example: Carl has a salary income (from public benefits) = 55.000 and capital income = 10.000,
then the LM tax is 0.

Consider the Java method, which can compute the total of the two taxes (BB+LM) for a person:� �
1 public i n t e r f a c e TaxCalculator {
2 / * * C a l c u l a t e combined bottom − b r a k e t and l a b o r marke t t a x .
3 @throws I l l e g a l A r g u m e n t E x c e p t i o n i f t h e s a l a r y income i s n e g a t i v e
4 * /
5 public i n t c a l c u l a t e T a x (i n t salaryIncome , boolean i s P u b l i c B e n e f i t ,
6 i n t capi ta l Income)
7 throws I l legalArgumentException {
8 }� �

You are asked to execute a test-driven development effort to develop the above specification.
You should use terminology, techniques, and tools from the course to:

– Cover steps and TDD principles in two or more initial interations and give examples of
JUnit test case code for them, as well as sketch initial production code.

– Broaden the discussion to include basic definitions, terminology, and techniques in TDD.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

4

0.4 Test-driven development.

Danish CPR numbers use a format consisting of two groups of digits separated by a “–”. The
first group of 6 digits encodes the birthday, whereas the second group of 4 digits encodes sex,
century, and a validation, similar to a checksum. In this exercise, we look at validating if a
string matches a subset of the requirements of a valid CPR number.

Consider the following specification:� �
1 public i n t e r f a c e CPRTest {
2 / * * Do a p r e l i m i n a r y t e s t o f a Danish CPR s t r i n g .
3 A CPR has 6 d i g i t s s t a t i n g t h e b i r t h d a y , and 4 d i g i t s which
4 a r e c o n t r o l d i g i t s , s e p a r a t e d by a dash ’ − ’ .
5
6 Thi s method r e t u r n s t r u e i f f :
7 − t h e l e n g t h o f t h e s t r i n g i s e x a c t l y 11 c h a r a c t e r s
8 − t h e form i s ”nnnnnn−nnnn” where n i s a number be tween 0−9
9 and t h e r e i s e x a c t l y a ’ − ’ a t p o s i t i o n 6 .

10 − t h e f i r s t two d i g i t s r e p r e s e n t a d a t e in i n t e r v a l 01−31
11 − t h e s e c o n d two d i g i t s r e p r e s e n t a month in i n t e r v a l 01−12
12 − t h e t h i r d two d i g i t s r e p r e s e n t t h e (l a s t p a r t o f) y e a r (00 −99)
13
14 − t h e f i r s t t h r e e c o n t r o l d i g i t s (j u s t a f t e r t h e dash) a r e NOT in range
15 − [5 3 7 ; 557] o r
16 − [6 3 7 ; 657] o r
17 − [7 3 7 ; 757] o r
18 − [8 3 7 ; 857]
19 * /
20 public boolean preTestCPR (S t r i n g cpr) ;
21 }� �

The first three control digits determine the century after a complex and irrelevant algorithm
which disallow values in the shown ranges. That is, a string like “040119-5351” is valid (first
three control digits are NOT in range [537; 557]), whereas a string “010119-5421” is not (first
three control digits ARE in range [537; 557]).

You are asked to execute a test-driven development effort to develop the above specification.
You should use terminology, techniques, and tools from the course to:

– Cover steps and TDD principles in two or more initial interations and give examples of
JUnit test case code for them, as well as sketch initial production code.

– Broaden the discussion to include basic definitions, terminology, and techniques in TDD.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

5

0.5 Systematic black-box testing.

The Breakthrough game is played on a standard chess board,
using 16 white and 16 black pawns that are initially arranged
like in the figure on the right.

The rules of movement are simple. White player begins. A
piece may move one square straight or diagonally forward if
that square is empty. A piece, however, may only capture an
opponent piece diagonally. When capturing, the opponent piece
is removed from the board and the player’s piece takes its po-
sition, as you do in chess.

The interface of a FACADE for the game is shown below.� �
1 public i n t e r f a c e Breakthrough {
2 / * * Enumerat ion o f t h e t h r e e t y p e s o f ’ p i e c e s ’ t h a t
3 i s p o s s i b l e on a g i v e n l o c a t i o n on t h e c h e s s b o a r d :
4 b l a c k , whi te , o r no p i e c e * /
5 public s t a t i c enum PieceType { BLACK, WHITE, NONE} ;
6 / * * Enumerat ion o f t h e two t y p e s o f p l a y e r s in t h e game ,
7 e i t h e r w h i t e o r b l a c k * /
8 public s t a t i c enum PlayerType { BLACK, WHITE } ;
9

10 / * * Return t h e t y p e o f p i e c e on a g i v e n (row , column) on
11 t h e c h e s s b o a r d .
12 @return t h e t y p e o f p i e c e on t h e l o c a t i o n . * /
13 public PieceType getPieceAt (i n t row , i n t column) ;
14
15 / * * Return t h e p l a y e r t h a t i s in turn , i . e . a l l o w e d
16 t o move .
17 @return t h e p l a y e r t h a t may move a p i e c e nex t * /
18 public PlayerType getPlayerInTurn () ;
19
20 / * * V a l i d a t e a move from a g i v e n l o c a t i o n (fromRow , fromColumn) t o a
21 new l o c a t i o n (toRow , toColumn) . A move i s i n v a l i d i f you t r y t o
22 move your opponent ’ s p i e c e s o r t h e move d o e s not f o l l o w t h e
23 r u l e s , s e e t h e e x e r c i s e s p e c i f i c a t i o n . PRECONDITION : t h e
24 (row , column) c o o r d i n a t e s a r e v a l i d p o s i t i t i o n s , t h a t i s , a l l
25 be tween (0 . . 7) .
26 @return t r u e i f t h e move i s v a l i d , f a l s e o t h e r w i s e * /
27 public boolean isMoveValid (i n t fromRow , i n t fromColumn ,
28 i n t toRow , i n t toColumn) ;
29
30 }� �

You are asked to develop a set of test cases using the equivalence class technique of method
isMoveValid.

You are asked use terminology, techniques, and tools from the course to:

– Identify conditions in the specification.
– Use the heuristics to generate a equivalence class table, and argue for their representation

and coverage properties.
– Generate a (partial) extended test case table using the heuristics of Myers.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

6

0.6 Systematic black-box testing.

Consider the following specification:� �
1 public i n t e r f a c e FanControl {
2 / * * Return t h e f r e q u e n c y o f t h e c o o l i n g f a n g i v e n t h e
3 t e m p e r a t u r e o f a i r and l i q u i d in a c h e m i c a l chamber .
4 The i d e a l l i q u i d t e m p e r a t u r e i s around 75 d e g r e e s .
5
6 The f r e q u e n c y (r e t u r n v a l u e) i s c a l c u l a t e d as f o l l o w s
7 (in o r d e r o f p r e c e d e n c e) :
8
9 i f TempLiquid > 90 r e t u r n 9999 (ALERT)

10 i f TempLiquid > 80 r e t u r n 500 (Max c o o l i n g)
11 i f TempLiquid < 70 r e t u r n 0 (No c o o l i n g)
12 o t h e r w i s e r e t u r n (TempLiquid −70)*50
13
14 The a i r t e m p e r a t u r e may o v e r r u l e t h e a b o v e c a l c u l a t i o n :
15 i f TempAir > 100 r e t u r n 9999
16 i f TempAir > 90 r e t u r n 500
17 * /
18 public i n t fanControl (double TempAir , double TempLiquid) ;
19 }� �

You are asked use terminology, techniques, and tools from the course to:

– Identify conditions in the specification.
– Use the heuristics to generate a equivalence class table, and argue for their representation

and coverage properties.
– Generate a (partial) extended test case table using the heuristics of Myers.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

7

0.7 Systematic Black-box Testing

Danish CPR numbers use a format consisting of two groups of digits separated by a “–”. The
first group of 6 digits encodes the birthday, whereas the second group of 4 digits encodes sex,
century, and a validation, similar to a checksum. In this exercise, we look at validating if a
string matches a subset of the requirements of a valid CPR number.

Consider the following specification:� �
1 public i n t e r f a c e CPRTest {
2 / * * Do a p r e l i m i n a r y t e s t o f a Danish CPR s t r i n g .
3 A CPR has 6 d i g i t s s t a t i n g t h e b i r t h d a y , and 4 d i g i t s which
4 a r e c o n t r o l d i g i t s , s e p a r a t e d by a dash ’ − ’ .
5
6 Thi s method r e t u r n s t r u e i f f :
7 − t h e l e n g t h o f t h e s t r i n g i s e x a c t l y 11 c h a r a c t e r s
8 − t h e form i s ”nnnnnn−nnnn” where n i s a number be tween 0−9
9 and t h e r e i s e x a c t l y a ’ − ’ a t p o s i t i o n 6 .

10 − t h e f i r s t two d i g i t s r e p r e s e n t a d a t e in i n t e r v a l 01−31
11 − t h e s e c o n d two d i g i t s r e p r e s e n t a month in i n t e r v a l 01−12
12 − t h e t h i r d two d i g i t s r e p r e s e n t t h e (l a s t p a r t o f) y e a r (00 −99)
13
14 − t h e f i r s t t h r e e c o n t r o l d i g i t s (j u s t a f t e r t h e dash) a r e NOT in range
15 − [5 3 7 ; 557] o r
16 − [6 3 7 ; 657] o r
17 − [7 3 7 ; 757] o r
18 − [8 3 7 ; 857]
19 * /
20 public boolean preTestCPR (S t r i n g cpr) ;
21 }� �

The first three control digits determine the century after a complex and irrelevant algorithm
which disallow values in the shown ranges. That is, a string like “040119-5351” is valid (first
three control digits are NOT in range [537; 557]), whereas a string “010119-5421” is not (first
three control digits ARE in range [537; 557]).

You are asked use terminology, techniques, and tools from the course to:

– Identify conditions in the specification.
– Use the heuristics to generate a equivalence class table, and argue for their representation

and coverage properties.
– Generate a (partial) extended test case table using the heuristics of Myers.
– Broaden the discussion to include basic definitions, terminology, and techniques in the

area.
– Relate to other topics in the course.

Do not try to cover all requirements if this removes the possibility of broadening the discus-
sion.

8

0.8 Variability Management

A door alarm system controls entry to a building by having a numeric key panel at each door
(similar to that used by Computer Science). The door’s lock is controlled by the software in
the panel: the door is only unlocked if a personal and unique 4-digit key code is entered. For
instance, Arne has code “1122” and Birte has code “4321”. If a proper key code is entered, the
person’s access to the building is logged in a database, storing time and user name.

You have developed a reliable implementation of the door alarm that uses an internal hashmap
(java.util.Map) to lookup user identity for a given keycode, stores the access log as a textfile on
a removable flash drive (java.io.PrintStream), and operates the door lock using the DoorLock
class. The Java code looks like this:� �

1 public c l a s s DoorAlarmImpl implements DoorAlarm {
2 private Map<Str ing , Str ing> userIndex ; / / Maps k e y c o d e s t o username
3 private DoorLock doorlock ;
4 private PrintStream l o g f i l e ;
5
6 / * * C a l l e d whenever a 4− d i g i t k e y c o d e has be en e n t e r e d ; i f v a l i d , open door
7 * and l o g username and t imes tamp in d a t a b a s e * /
8 @Override
9 public void handleKeycodeEntered (S t r i n g keycode) {

10 S t r i n g username = userIndex . get (keycode) ;
11 i f (username != null) {
12 doorlock . open () ;
13 ZonedDateTime time = ZonedDateTime . now () ; / / Get Current t ime and d a t e
14 l o g f i l e . p r i n t l n (” Access granted to ”+username+” at : ”+time) ;
15 }
16 }
17
18 public DoorAlarmImpl () {
19 userIndex = i n i t i a l i z e U s e r I n d e x () ;
20 doorlock = i n i t i a l i z e D o o r L o c k D r i v e r () ;
21 l o g f i l e = i n i t i a l i z e L o g F i l e () ;
22 }
23
24 / / i n i t i a l i z e . . . methods o m i t t e d
25 }� �

(’ZonedDateTime’ represents time in Java)

However, now a new customer wants to use our door alarm system but they already have
(key-code, user-identity) pairs stored as a table in an external SQL database, and wants the
access log to be stored in the same SQL database.

You are asked to describe both a compositional as well as a parametric solution to handle this
requirement.

– For each sketch Java code that shows how the variability is handled—you may invent
interfaces and method signatures that suits the problem.

– Discuss benefits and liabilities of both the parametric and compositional proposals.
– Discuss concepts introduced at a theoretical level.
– Relate to other topics

If pressed for time, focus on the compositional solution.

9

0.9 Variability Management

A door alarm system controls entry to a building by having a numeric key panel at each door
(similar to that used by Computer Science). The door’s lock is controlled by the software in
the panel: the door is only unlocked if a personal and unique 4-digit key code is entered. For
instance, Arne has code “1122” and Birte has code “4321”. If a proper key code is entered, the
person’s access to the building is logged in a database, storing time and user name.

You have developed a reliable implementation of the door alarm that uses an internal hashmap
(java.util.Map) to lookup user identity for a given keycode, stores the access log as a textfile on
a removable flash drive (java.io.PrintStream), and operates the door lock using the DoorLock
class. The Java code looks like this:� �

1 public c l a s s DoorAlarmImpl implements DoorAlarm {
2 private Map<Str ing , Str ing> userIndex ; / / Maps k e y c o d e s t o username
3 private DoorLock doorlock ;
4 private PrintStream l o g f i l e ;
5
6 / * * C a l l e d whenever a 4− d i g i t k e y c o d e has be en e n t e r e d ; i f v a l i d , open door
7 * and l o g username and t imes tamp in d a t a b a s e * /
8 @Override
9 public void handleKeycodeEntered (S t r i n g keycode) {

10 S t r i n g username = userIndex . get (keycode) ;
11 i f (username != null) {
12 doorlock . open () ;
13 ZonedDateTime time = ZonedDateTime . now () ; / / Get Current t ime and d a t e
14 l o g f i l e . p r i n t l n (” Access granted to ”+username+” at : ”+time) ;
15 }
16 }
17
18 public DoorAlarmImpl () {
19 userIndex = i n i t i a l i z e U s e r I n d e x () ;
20 doorlock = i n i t i a l i z e D o o r L o c k D r i v e r () ;
21 l o g f i l e = i n i t i a l i z e L o g F i l e () ;
22 }
23
24 / / i n i t i a l i z e . . . methods o m i t t e d
25 }� �

(’ZonedDateTime’ represents time in Java)

However, now a new customer wants to use our door alarm system but they already have
(key-code, user-identity) pairs stored as a table in an external SQL database, and wants the
access log to be stored in the same SQL database.

You are asked to describe both a compositional as well as a polymorphic solution to handle
this requirement.

– For each sketch Java code that shows how the variability is handled—you may invent
interfaces and method signatures that suits the problem.

– Discuss benefits and liabilities of both the polymorphic and compositional proposals.
– Discuss concepts introduced at a theoretical level.
– Relate to other topics

If pressed for time, focus on the compositional solution.

10

0.10 Variability Management.

A cooling fan control system (Da: blæser-baseret kølesystem) is controlling the temperature in
a cold store (Da: kølehus) by measuring the temperature and adjusting a cooling fan’s rotation
frequency (=speed): higher frequency means better cooling. The control system is available in
several variants. Display variants: It comes in a cheap version whose user interface is three
LEDs (“lamps”) that light up if fan frequency is low, medium or high respectively, and a more
expensive version with a single-line 32 character LCD display showing the frequency. Sen-
sor variations: The control system also handles three variants of temperature measurement
sensors: Philips, Textronic, or Texas.

Consider the following Java code skeleton:� �
1 public a b s t r a c t c l a s s CoolingFanControlB {
2 public s t a t i c void main (S t r i n g args []) {
3 CoolingFanControlB c t r l = new CoolingFanControl LED Phil l ips () ;
4 c t r l . controlTemperature () ;
5 }
6 / * * The main c o n t r o l l e r l o o p : r e a d s e n s o r and c o n t r o l f a n .
7 * /
8 public void controlTemperature () {
9 while (t rue) {

10 double reading = readTemperature () ;
11 double fanFrequency = controlAlgori thm (reading) ;
12 displayFrequency (fanFrequency) ;
13 / / [c o n t r o l t h e c o o l i n g f a n]
14 }
15 }
16 a b s t r a c t void displayFrequency (double f) ;
17 a b s t r a c t double readTemperature () ;
18
19 double controlAlgori thm (double T) {
20 / * [c a l c u l a t e f r e q u e n c e b a s e d on T] * /
21 return 2 5 0 . 0 ; / / Fake ’ i t
22 }
23 }
24
25 c l a s s CoolingFanControl LED Phil ips extends CoolingFanControlB {
26 void displayFrequency (double f) {
27 / * [Turn o f f a l l LEDs] * /
28 i f (f < 100) { / * [LowSpeedLED . turnOn ()] * / }
29 i f (f >= 100 && f < 500) { / * [MediumSpeedLED . turnOn ()] * / }
30 i f (f >= 500) { / * [HighSpeedLED . turnOn ()] * / }
31 }
32 double readTemperature () {
33 double reading ; / / t h e t e m p e r a t u r e measured , a s s i g n e d in c o d e be low
34 / * [measure t e m p e r a t u r e us ing PHILIPS s e n s o r] * / ;
35 return reading ;
36 }
37 }� �

(Only the subclass for the LED plus Philips combination is shown. The [...] parts in comments are code to be filled
in.)

You are asked use terminology, techniques, and tools for designing for variability to:

– Analyze the code fragment with respect to benefits and liabilities.
– Classify the techniques used to handle variability.
– Present an alternative design that improves maintainability and flexibility; and sketch

central refactorings in Java.
– Discuss concepts introduced at a theoretical level.
– Relate to other topics.

11

0.11 Variability management

The pilots on in-bound and out-bound flights from an airport need precise information about
the wind on the runway. One important information is the 10 minute mean wind that describes
speed, direction, and characteristics of the wind in the last 10 minutes. This information is
coded in different types of “reports”, MET REPORT, METAR, and SYNOP, that each format
the information in their own way. Furthermore the algorithms to calculate the 10 minute mean
from observed values vary from one country to another.

So far, we have sold a wind computation system to Denmark, France, and Germany, and have
a design like the code shown below (Only METAR report variant is shown, and many data
values are faked to reduce the code size.)� �

1 public a b s t r a c t c l a s s WindCalculator {
2 public s t a t i c void main (S t r i n g [] args) {
3 / / Example : METAR Wind a f t e r Danish r e g u l a t i o n s .
4 WindCalculator c a l c u l a t o r = new METARWindCalculator () ;
5 i n t [] values = new i n t [] {2 3 0 , 7 , 2 4 5 , 8 , 2 3 4 , 7} ; / / f a k e − i t
6 S t r i n g METAR =
7 c a l c u l a t o r . calculateFormatted10MinWind (values ,
8 WindCalculator .DANISH) ;
9 }

10 / * * c a l c u l a t e a f o r m a t t e d 10 minute mean s t r i n g t o i n s e r t i n t o a
11 * s p e c i f i c m e t e r o l o g i c a l r e p o r t and c a l c u l a t e d a c c o r d i n g t o
12 * n a t i o n a l a l g o r i t h m s . * /
13 public S t r i n g calculateFormatted10MinWind (i n t [] datavalues ,
14 i n t algorithmType) {
15 i n t meanSpeed = 7 , meanDirection = 2 3 4 ; / / f a k e − i t
16 boolean vrb = f a l s e ; / / f a k e − i t
17 switch (algorithmType) {
18 case DANISH:
19 / * c a l c u l a t e means speed , d i r e c t i o n , and vrb c o n d i t i o n a c c o r d i n g
20 t o Danish r e g u l a t i o n s (o m i t t e d) * /
21 break ;
22 case FRENCH: / * French a l g o r i t h m (o m i t t e d) * / break ;
23 case GERMAN: / * German a l g o r i t h m (o m i t t e d) * / break ;
24 }
25 return format (meanSpeed , meanDirection , vrb) ;
26 }
27 public a b s t r a c t S t r i n g format (i n t s , i n t d , boolean vrb) ;
28
29 / * c o n s t a n t s d e f i n i n g which n a t i o n a l c a l c u l a t i o n a l g o r i t h m t o use * /
30 public s t a t i c f i n a l i n t DANISH = 1 0 0 ;
31 public s t a t i c f i n a l i n t FRENCH = 1 0 1 ;
32 public s t a t i c f i n a l i n t GERMAN = 1 0 2 ;
33 }
34 c l a s s METARWindCalculator extends WindCalculator {
35 public S t r i n g format (i n t s , i n t d , boolean vrb) {
36 S t r i n g r e s u l t = ” 23407 ” ; / / f a k e − i t
37 return r e s u l t ;
38 }
39 }� �

You are asked use terminology, techniques, and tools for designing for variability to:

– Analyze the code fragment with respect to benefits and liabilities.
– Classify the techniques used to handle variability.
– Present an alternative design that improves maintainability and flexibility; and sketch

central refactorings in Java.
– Discuss concepts introduced at a theoretical level.
– Relate to other topics.

12

0.12 Test Doubles and unit/integration testing

The hardware producer of a seven segment LED display provides a very low-level interface for
turning on each of the seven LED (light-emitting diode) segments on or of by a Java interface:� �

1 public i n t e r f a c e SevenSegment {
2 / * * turn a LED on or o f f .
3 * @param l e d t h e number o f t h e LED . Range i s 0 t o 6 . The LEDs a r e
4 * numbered t o p t o bottom , l e f t t o r i g h t . That i s , t h e top ,
5 * h o r i z o n t a l , LED i s 0 , t h e t o p l e f t LED i s 1 , e t c .
6 * @param on i f t r u e t h e LED i s tur ned on o t h e r w i s e i t i s tu rned
7 * o f f .
8 * /
9 void setLED (i n t led , boolean on) ;

10 }� �
As an example, to display “0” as in the figure below, we would have to write:� �

1 d . setLED (0 , t rue) ; d . setLED (1 , t rue) ; d . setLED (2 , t rue) ; d . setLED (3 , f a l s e) ;
2 d . setLED (4 , t rue) ; d . setLED (5 , t rue) ; d . setLED (6 , t rue) ;� �

Clearly, this is much too cumbersome in practice, so it is much better to define an abstraction
that can turn on and off the proper LEDs for our ten numbers 0 to 9:� �

1 public i n t e r f a c e NumberDisplay {
2 / * * d i s p l a y a number on a s e v e n segment .
3 * @param number t h e number t o d i s p l a y .
4 * P r e c o n d i t i o n : number s h o u l d be in t h e range 0 t o 9 .
5 * /
6 void display (i n t number) ;
7 }� �

Thus, the code above would simply become: d2.display(0);

You are asked to use the terminology and techniques of test doubles to:

– Sketch a design that allows TDD and automated testing of the implementation of the
NumberDisplay interface, using UML and Java.

– Discuss concepts introduced from a theoretical viewpoint.
– Classify and discuss the developed doubles(s) according to the classification of Meszaros

(Section 12.6 in FRS 2nd Edition).
– Relate to other topics.

13

0.13 Test Doubles and Unit/Integration Testing.

A cooling fan control system (Da: blæser-baseret kølesystem) is controlling the temperature in
a cold store (Da: kølehus) by measuring the temperature and adjusting a cooling fan’s rotation
frequency (=speed): higher frequency means better cooling. The control system is available in
several variants. Display variants: It comes in a cheap version whose user interface is three
LEDs (“lamps”) that light up if fan frequency is low, medium or high respectively, and a more
expensive version with a single-line 32 character LCD display showing the frequency. Sen-
sor variations: The control system also handles three variants of temperature measurement
sensors: Philips, Textronic, or Texas.

Consider the following Java code skeleton:� �
1 public a b s t r a c t c l a s s CoolingFanControlB {
2 public s t a t i c void main (S t r i n g args []) {
3 CoolingFanControlB c t r l = new CoolingFanControl LED Phil l ips () ;
4 c t r l . controlTemperature () ;
5 }
6 / * * The main c o n t r o l l e r l o o p : r e a d s e n s o r and c o n t r o l f a n .
7 * /
8 public void controlTemperature () {
9 while (t rue) {

10 double reading = readTemperature () ;
11 double fanFrequency = controlAlgori thm (reading) ;
12 displayFrequency (fanFrequency) ;
13 / / [c o n t r o l t h e c o o l i n g f a n]
14 }
15 }
16 a b s t r a c t void displayFrequency (double f) ;
17 a b s t r a c t double readTemperature () ;
18
19 double controlAlgori thm (double T) {
20 / * [c a l c u l a t e f r e q u e n c e b a s e d on T] * /
21 return 2 5 0 . 0 ; / / Fake ’ i t
22 }
23 }
24
25 c l a s s CoolingFanControl LED Phil ips extends CoolingFanControlB {
26 void displayFrequency (double f) {
27 / * [Turn o f f a l l LEDs] * /
28 i f (f < 100) { / * [LowSpeedLED . turnOn ()] * / }
29 i f (f >= 100 && f < 500) { / * [MediumSpeedLED . turnOn ()] * / }
30 i f (f >= 500) { / * [HighSpeedLED . turnOn ()] * / }
31 }
32 double readTemperature () {
33 double reading ; / / t h e t e m p e r a t u r e measured , a s s i g n e d in c o d e be low
34 / * [measure t e m p e r a t u r e us ing PHILIPS s e n s o r] * / ;
35 return reading ;
36 }
37 }� �

(Only the subclass for the LED plus Philips combination is shown. The [...] parts in comments are code to be filled
in.)

You are asked to use terminology, techniques, and tools for test doubles and unit/integration
testing to:

– Analyze the specification above with respect to its suitability for doing automatic testing.
– Use UML and Java code to present an alternative design and implementation sketch that

improves its ability for doing automated testing.
– Discuss the concepts of test doubles and unit/integration tests in relation to the outlined

case.
– Relate to other topics.

14

0.14 Design patterns

Consider the the simplified design of the pay station, here described as a UML class diagram:

«interface»
PayStation

«interface»
Receipt

issuer

*
1

PayStationHardware

PayStationImpl

1

You are now faced with a new customer requirement: In the four southern pay stations on our park-
ing lot, the pay stations should not accept payment from 19:00 evening until 7:00 morning. Rephrasing
this, the addPayment method of interface PayStation of these pay stations should throw an Il-
legalConException no matter what coinValue is entered.

You are asked to identify a design pattern that will solve this requirement such that a flexible,
reliable, and maintainable design emerge.

– Describe the design using UML and Java and emphasize the design pattern identified.
– Discuss alternatives to the proposed design, and argue for benefits and liabilities.
– Discuss the design pattern concept from a theoretical point of view, including the various

definitions.
– Relate to other topics.

15

0.15 Design patterns

Alphatown approaches us with a new requirement. They want to monitor the pay stations on
a given parking lot for two purposes: A) they want a digital sign at the entrance stating the
number of vacant slots for cars at the parking lot, and B) they want to monitor the total earning
of the parking lot. Below is shown an early prototype of such a system where four pay stations
are monitored by two “monitor” applications.

We realize that a monitor application can calculate the two properties (vacant slots and earning)
if they are informed of “number of minutes bought” and “amount of cents entered” in every
buy transaction from every pay station in the parking lot.

You are asked to identify a design pattern that will solve this requirement such that a flexible,
reliable, and maintainable design emerge.

– Describe the design using UML and Java and emphasize the design pattern identified.
– Discuss alternatives to the proposed design, and argue for benefits and liabilities.
– Discuss the design pattern concept from a theoretical point of view, including the various

definitions.
– Relate to other topics.

(You should focus on the exchange of information between pay stations and monitor applica-
tions, not on the algorithm to calculate number of vacant slot.)

16

0.16 Design Patterns

The startup company BigCloud provides a cloud based SQL database service free of charge. De-
velopers can utilize a database using the BigBase Java interface that has methods for updating
tables as well as make queries using standard SQL statements:� �

1 import j ava . s q l . * ;
2
3 public i n t e r f a c e BigBase {
4 / / up da t e t a b l e s (CREATE and UPDATE s t a t e m e n t s)
5 public void executeUpdate (S t r i n g sqlUpdate) throws SQLException ;
6 / / query (SELECT FROM WHERE s t a t e m e n t)
7 public R e s u l t S e t executeQuery (S t r i n g sqlQuery) throws SQLException ;
8 }� �

You shall assume that the actual execution of SQL on the BigBase server is handled by a
class implementing the BigBase interface. A tentative implementation on the server side is
shown below, where Request objects are received on the server for every internet call from a
client. The server logs the client in, using his/her req.username, and stores/uses the reference
to invoke methods on his/her BigBase implementation:� �

1 private Map<Str ing , BigBase> databaseMap ; / / Map username t o d a t a b a s e r e f e r e n c e
2 public void handleRemoteClientLogin (LoginRequest req) {
3 / / [l o g t h e u s e r wi th username ’ r e q . username ’ in]
4 BigBase database = new BigBaseImpl () ;
5 databaseMap . put (req . username , database) ;
6 }
7 public void handleRemoteClientRequest (Request req) throws SQLException {
8 BigBase database = databaseMap . get (req . username) ; / / g e t d a t a b a s e f o r u s e r
9 i f (req . type == Request .UPDATE) {

10 database . executeUpdate (req . statement) ;
11 } e lse i f (req . type == Request .QUERY) {
12 R e s u l t S e t r s = database . executeQuery (req . statement) ;
13 }
14 / / [s end t h e answer b a c k t o c l i e n t]
15 }� �

Now, one year after launch, BigCloud is highly successfull and wants to start generating profits
from its success. Therefore it is decided on a pay-per-use model such that the first 1000 updates
per month are free while all subsequent updates cost 1 cent pr call to the executeUpdate
method. It is considered highly likely that the limit of free updates and the cost of each update
will change in the future.

It has also been decided that statistics data on all queries should be collected, i.e., all execute-
Query method calls for all users should be counted on the servers.

You are asked to identify design pattern(s) that will allow BigCloud to implement this be-
haviour.

– Identify suitable design pattern(s) to implement a flexible way to fulfil the requirements.
– Sketch Java code and UML diagrams for the solution.
– Discuss design patterns from a theoretical viewpoint.
– Relate to other topics.

Hint: The set of patterns to consider are ADAPTER, COMMAND, DECORATOR, and PROXY.

17

0.17 Design Patterns

A simple drawing program, similar to “Paint”, allows users to draw
shapes like lines, curves, rectangles, etc., using the mouse. To choose
a shape, the user clicks a tool button (like ’Draw Line’ in the fig-
ure) and next the program interprets mouse down, mouse drag, and
mouse up, to draw the shape. A first prototype of the design, hav-
ing only a line drawing and rectangle drawing tool, and using print
statements to simulate shape drawing, looks like this:� �

1 public c l a s s DrawingProgram {
2 public s t a t i c void main (S t r i n g [] args) {
3 DrawingEditor e d i t o r = new DrawingEditor () ;
4 e d i t o r . se tTool (ToolType . DrawLineTool) ;
5 / / s i m u l a t e mouse e v e n t s , t o d e m o n s t r a t e b e h a v i o r
6 e d i t o r . mousePressed () ;
7 e d i t o r . mouseMoved () ;
8 e d i t o r . mouseReleased () ;
9 }

10 }
11 i n t e r f a c e C o n t r o l l e r {
12 / * * when mouse b u t t o n i s p r e s s e d * /
13 public void mousePressed () ;
14 / * * when mouse i s moved a c r o s s window w h i l e b u t t o n down * /
15 public void mouseMoved () ;
16 / * * when mouse b u t t o n i s r e l e a s e d * /
17 public void mouseReleased () ;
18 }
19 enum ToolType { DrawLineTool , DrawRectangleTool } ;
20
21 c l a s s DrawingEditor implements C o n t r o l l e r {
22 ToolType currentToolType ;
23 public void se tTool (ToolType newToolType) { currentToolType = newToolType ; }
24
25 public void mousePressed () {
26 i f (currentToolType == ToolType . DrawRectangleTool) {
27 System . out . p r i n t l n (” Rectangle Drawing S t a r t ”) ; }
28 i f (currentToolType == ToolType . DrawLineTool) {
29 System . out . p r i n t l n (” Line Drawing S t a r t ”) ; }
30 }
31 public void mouseMoved () {
32 i f (currentToolType == ToolType . DrawRectangleTool) {
33 System . out . p r i n t l n (” Rectangle Drawing Drag”) ; }
34 i f (currentToolType == ToolType . DrawLineTool) {
35 System . out . p r i n t l n (” Line Drawing Drag”) ; }
36 }
37 public void mouseReleased () {
38 i f (currentToolType == ToolType . DrawRectangleTool) {
39 System . out . p r i n t l n (” Rectangle Drawing Created ”) ; }
40 i f (currentToolType == ToolType . DrawLineTool) {
41 System . out . p r i n t l n (” Line Drawing Created ”) ; }
42 }
43 }� �

However, we would like to be able to draw many more shapes, like circles, triangles, etc.

You are asked to use design pattern terminology, techniques, and tools to:

– Describe the current design and identify a design pattern that would improve flexibility
and allow change by addition. You may invent and modify interfaces and method signa-
tures for the case.

– Sketch Java code that implements your new design.
– Discuss benefits and liabilities, and relate to other topics.

18

0.18 Compositional Design

The pilots on in-bound and out-bound flights from an airport need precise information about
the wind on the runway. One important information is the 10 minute mean wind that describes
speed, direction, and characteristics of the wind in the last 10 minutes. This information is
coded in different types of “reports”, MET REPORT, METAR, and SYNOP, that each format
the information in their own way. Furthermore the algorithms to calculate the 10 minute mean
from observed values vary from one country to another.

So far, we have sold a wind computation system to Denmark, France, and Germany, and have
a design like the code shown below (Only METAR report variant is shown, and many data
values are faked to reduce the code size.)� �

1 public a b s t r a c t c l a s s WindCalculator {
2 public s t a t i c void main (S t r i n g [] args) {
3 / / Example : METAR Wind a f t e r Danish r e g u l a t i o n s .
4 WindCalculator c a l c u l a t o r = new METARWindCalculator () ;
5 i n t [] values = new i n t [] {2 3 0 , 7 , 2 4 5 , 8 , 2 3 4 , 7} ; / / f a k e − i t
6 S t r i n g METAR =
7 c a l c u l a t o r . calculateFormatted10MinWind (values ,
8 WindCalculator .DANISH) ;
9 }

10 / * * c a l c u l a t e a f o r m a t t e d 10 minute mean s t r i n g t o i n s e r t i n t o a
11 * s p e c i f i c m e t e r o l o g i c a l r e p o r t and c a l c u l a t e d a c c o r d i n g t o
12 * n a t i o n a l a l g o r i t h m s . * /
13 public S t r i n g calculateFormatted10MinWind (i n t [] datavalues ,
14 i n t algorithmType) {
15 i n t meanSpeed = 7 , meanDirection = 2 3 4 ; / / f a k e − i t
16 boolean vrb = f a l s e ; / / f a k e − i t
17 switch (algorithmType) {
18 case DANISH:
19 / * c a l c u l a t e means speed , d i r e c t i o n , and vrb c o n d i t i o n a c c o r d i n g
20 t o Danish r e g u l a t i o n s (o m i t t e d) * /
21 break ;
22 case FRENCH: / * French a l g o r i t h m (o m i t t e d) * / break ;
23 case GERMAN: / * German a l g o r i t h m (o m i t t e d) * / break ;
24 }
25 return format (meanSpeed , meanDirection , vrb) ;
26 }
27 public a b s t r a c t S t r i n g format (i n t s , i n t d , boolean vrb) ;
28
29 / * c o n s t a n t s d e f i n i n g which n a t i o n a l c a l c u l a t i o n a l g o r i t h m t o use * /
30 public s t a t i c f i n a l i n t DANISH = 1 0 0 ;
31 public s t a t i c f i n a l i n t FRENCH = 1 0 1 ;
32 public s t a t i c f i n a l i n t GERMAN = 1 0 2 ;
33 }
34 c l a s s METARWindCalculator extends WindCalculator {
35 public S t r i n g format (i n t s , i n t d , boolean vrb) {
36 S t r i n g r e s u l t = ” 23407 ” ; / / f a k e − i t
37 return r e s u l t ;
38 }
39 }� �

You are asked to:

– Describe the compositional design principles and the ③-①-②process.
– Use them to refactor the above design problem to become more flexible. You should

sketch concrete Java code and/or UML diagrams.
– Relate the refactored design to multi-dimensional variance, and discuss benefits and lia-

bilities of the original and refactored design.
– Relate to other topics.

19

0.19 Compositional Design

The RunApp company is designing a framework for developing run-
ning apps for smartphones: the runner’s GPS location is read from the
phone’s hardware device, next the location is adjusted to the nearest
road or path, and the location is then shown overlaid on a graphical
map; similar to the figure on the right.

The RunApp framework must be configurable to support: GPS hard-
ware variants: GPS hardware from Samsung, LG, and Apple. Map ser-
vices: Show location on map services provided by Google and Apple.

Consider the following Java code skeleton which configures the RunApp
for a Samsung GPS and Google map service:� �

1 public a b s t r a c t c l a s s RunApp {
2 public s t a t i c void main (S t r i n g [] args) {
3 RunApp runapp = new RunApp SamsungGPS GoogleMap () ;
4 / / e n t e r main loop , c o n s t a n t l y r e a d i n g GPS and u p d a t i n g map
5 while (t rue) {
6 runapp . updatePositionOnMap () ;
7 }
8 }
9 / * * r e a d l o c a t i o n from GPS and up da t e t h e map * /

10 public void updatePositionOnMap () {
11 Locat ion l = pollGPSLocation () ;
12 l = adjustPositionToBeOnARoad (l)
13 showLocationOnMap (l) ;
14 }
15 a b s t r a c t Location pollGPSLocation () ;
16 a b s t r a c t void showLocationOnMap (Locat ion l o c a t i o n) ;
17 private Location adjustPositionToBeOnARoad (Locat ion l o c a t i o n) {
18 / * [C o r r e c t l o c a t i o n so i t i s on a road or pa th] * /
19 return adjustedLocat ion
20 }
21 }
22
23 c l a s s RunApp SamsungGPS GoogleMap extends RunApp {
24 public Location pollGPSLocation () {
25 Locat ion l = new Location () ;
26 / * [i n t e r a c t wi th Samsung hardware t o g e t GPS l o c a t i o n] * /
27 return l ;
28 }
29 public void showLocationOnMap (Locat ion l o c a t i o n) {
30 / * [Use Goog l e API t o show ’ l ’ on a v i s u a l map * /
31 }
32 }
33 / * * E n c a p s u l a t e (l a t i t u d e , l o n g i t u d e) d a t a . Here i t
34 i s a f a k e − i t i m p l e m e n t a t i o n , a lways Aarhus * /
35 c l a s s Location {
36 public i n t getLat i tude () { return 5 6 ; }
37 public i n t getLongitude () { return 1 0 ; }
38 }� �

[Only the Samsung/Google variant is shown. The Location class is a fake here to reduce code size.]

You are asked to:

– Describe the compositional design principles and the ③-①-②process.
– Use them to refactor the above design problem to become more flexible. You should

sketch concrete Java code and/or UML diagrams.
– Relate the refactored design to multi-dimensional variance, and discuss benefits and lia-

bilities of the original and refactored design.
– Relate to other topics.

20

0.20 Frameworks

The pilots on in-bound and out-bound flights from an airport need precise information about
the wind on the runway. One important information is the 10 minute mean wind that describes
speed, direction, and characteristics of the wind in the last 10 minutes. This information is
coded in different types of “reports”, MET REPORT, METAR, and SYNOP, that each format
the information in their own way. Furthermore the algorithms to calculate the 10 minute mean
from observed values vary from one country to another.

So far, we have sold a wind computation system to Denmark, France, and Germany, and have
a design like the code shown below (Only METAR report variant is shown, and many data
values are faked to reduce the code size.)� �

1 public a b s t r a c t c l a s s WindCalculator {
2 public s t a t i c void main (S t r i n g [] args) {
3 / / Example : METAR Wind a f t e r Danish r e g u l a t i o n s .
4 WindCalculator c a l c u l a t o r = new METARWindCalculator () ;
5 i n t [] values = new i n t [] {2 3 0 , 7 , 2 4 5 , 8 , 2 3 4 , 7} ; / / f a k e − i t
6 S t r i n g METAR =
7 c a l c u l a t o r . calculateFormatted10MinWind (values ,
8 WindCalculator .DANISH) ;
9 }

10 / * * c a l c u l a t e a f o r m a t t e d 10 minute mean s t r i n g t o i n s e r t i n t o a
11 * s p e c i f i c m e t e r o l o g i c a l r e p o r t and c a l c u l a t e d a c c o r d i n g t o
12 * n a t i o n a l a l g o r i t h m s . * /
13 public S t r i n g calculateFormatted10MinWind (i n t [] datavalues ,
14 i n t algorithmType) {
15 i n t meanSpeed = 7 , meanDirection = 2 3 4 ; / / f a k e − i t
16 boolean vrb = f a l s e ; / / f a k e − i t
17 switch (algorithmType) {
18 case DANISH:
19 / * c a l c u l a t e means speed , d i r e c t i o n , and vrb c o n d i t i o n a c c o r d i n g
20 t o Danish r e g u l a t i o n s (o m i t t e d) * /
21 break ;
22 case FRENCH: / * French a l g o r i t h m (o m i t t e d) * / break ;
23 case GERMAN: / * German a l g o r i t h m (o m i t t e d) * / break ;
24 }
25 return format (meanSpeed , meanDirection , vrb) ;
26 }
27 public a b s t r a c t S t r i n g format (i n t s , i n t d , boolean vrb) ;
28
29 / * c o n s t a n t s d e f i n i n g which n a t i o n a l c a l c u l a t i o n a l g o r i t h m t o use * /
30 public s t a t i c f i n a l i n t DANISH = 1 0 0 ;
31 public s t a t i c f i n a l i n t FRENCH = 1 0 1 ;
32 public s t a t i c f i n a l i n t GERMAN = 1 0 2 ;
33 }
34 c l a s s METARWindCalculator extends WindCalculator {
35 public S t r i n g format (i n t s , i n t d , boolean vrb) {
36 S t r i n g r e s u l t = ” 23407 ” ; / / f a k e − i t
37 return r e s u l t ;
38 }
39 }� �

You are asked to use framework terminology, techniques, and tools to:

– Describe how the design could be refactored to become a framework.
– Sketch the framework design using Java code fragments and/or UML diagrams.
– Analyse your design in terms of the unification and separation variant of the TEMPLATE

METHOD pattern.
– Discuss concepts introduced from a theoretical viewpoint.
– Relate to other topics.

21

0.21 Frameworks

The RunApp company is designing a framework for developing run-
ning apps for smartphones: the runner’s GPS location is read from the
phone’s hardware device, next the location is adjusted to the nearest
road or path, and the location is then shown overlaid on a graphical
map; similar to the figure on the right.

The RunApp framework must be configurable to support: GPS hard-
ware variants: GPS hardware from Samsung, LG, and Apple. Map ser-
vices: Show location on map services provided by Google and Apple.

Consider the following Java code skeleton which configures the RunApp
for a Samsung GPS and Google map service:� �

1 public a b s t r a c t c l a s s RunApp {
2 public s t a t i c void main (S t r i n g [] args) {
3 RunApp runapp = new RunApp SamsungGPS GoogleMap () ;
4 / / e n t e r main loop , c o n s t a n t l y r e a d i n g GPS and u p d a t i n g map
5 while (t rue) {
6 runapp . updatePositionOnMap () ;
7 }
8 }
9 / * * r e a d l o c a t i o n from GPS and up da t e t h e map * /

10 public void updatePositionOnMap () {
11 Locat ion l = pollGPSLocation () ;
12 l = adjustPositionToBeOnARoad (l)
13 showLocationOnMap (l) ;
14 }
15 a b s t r a c t Location pollGPSLocation () ;
16 a b s t r a c t void showLocationOnMap (Locat ion l o c a t i o n) ;
17 private Location adjustPositionToBeOnARoad (Locat ion l o c a t i o n) {
18 / * [C o r r e c t l o c a t i o n so i t i s on a road or pa th] * /
19 return adjustedLocat ion
20 }
21 }
22
23 c l a s s RunApp SamsungGPS GoogleMap extends RunApp {
24 public Location pollGPSLocation () {
25 Locat ion l = new Location () ;
26 / * [i n t e r a c t wi th Samsung hardware t o g e t GPS l o c a t i o n] * /
27 return l ;
28 }
29 public void showLocationOnMap (Locat ion l o c a t i o n) {
30 / * [Use Goog l e API t o show ’ l ’ on a v i s u a l map * /
31 }
32 }
33 / * * E n c a p s u l a t e (l a t i t u d e , l o n g i t u d e) d a t a . Here i t
34 i s a f a k e − i t i m p l e m e n t a t i o n , a lways Aarhus * /
35 c l a s s Location {
36 public i n t getLat i tude () { return 5 6 ; }
37 public i n t getLongitude () { return 1 0 ; }
38 }� �

[Only the Samsung/Google variant is shown. The Location class is a fake here to reduce code size.]

You are asked to use framework terminology, techniques, and tools to refactor the current de-
sign:

– Propose a compositional framework design that will handle the suggested variants. Your
proposal should include Java code sketches and UML diagrams. You may invent inter-
faces to suit the problem.

– Analyse your design in terms of the unification and separation variant of the TEMPLATE

METHOD pattern.
– Relate to other topics.

22

0.22 Frameworks

A cooling fan control system (Da: blæser-baseret kølesystem) is controlling the temperature in
a cold store (Da: kølehus) by measuring the temperature and adjusting a cooling fan’s rotation
frequency (=speed): higher frequency means better cooling. The control system is available in
several variants. Display variants: It comes in a cheap version whose user interface is three
LEDs (“lamps”) that light up if fan frequency is low, medium or high respectively, and a more
expensive version with a single-line 32 character LCD display showing the frequency. Sen-
sor variations: The control system also handles three variants of temperature measurement
sensors: Philips, Textronic, or Texas.

Consider the following Java code skeleton:� �
1 public a b s t r a c t c l a s s CoolingFanControlB {
2 public s t a t i c void main (S t r i n g args []) {
3 CoolingFanControlB c t r l = new CoolingFanControl LED Phil l ips () ;
4 c t r l . controlTemperature () ;
5 }
6 / * * The main c o n t r o l l e r l o o p : r e a d s e n s o r and c o n t r o l f a n .
7 * /
8 public void controlTemperature () {
9 while (t rue) {

10 double reading = readTemperature () ;
11 double fanFrequency = controlAlgori thm (reading) ;
12 displayFrequency (fanFrequency) ;
13 / / [c o n t r o l t h e c o o l i n g f a n]
14 }
15 }
16 a b s t r a c t void displayFrequency (double f) ;
17 a b s t r a c t double readTemperature () ;
18
19 double controlAlgori thm (double T) {
20 / * [c a l c u l a t e f r e q u e n c e b a s e d on T] * /
21 return 2 5 0 . 0 ; / / Fake ’ i t
22 }
23 }
24
25 c l a s s CoolingFanControl LED Phil ips extends CoolingFanControlB {
26 void displayFrequency (double f) {
27 / * [Turn o f f a l l LEDs] * /
28 i f (f < 100) { / * [LowSpeedLED . turnOn ()] * / }
29 i f (f >= 100 && f < 500) { / * [MediumSpeedLED . turnOn ()] * / }
30 i f (f >= 500) { / * [HighSpeedLED . turnOn ()] * / }
31 }
32 double readTemperature () {
33 double reading ; / / t h e t e m p e r a t u r e measured , a s s i g n e d in c o d e be low
34 / * [measure t e m p e r a t u r e us ing PHILIPS s e n s o r] * / ;
35 return reading ;
36 }
37 }� �

(Only the subclass for the LED plus Philips combination is shown. The [...] parts in comments are code to be filled
in.)

You are asked to use framework terminology, techniques, and tools to:

– Describe how the design could be refactored to become a framework.
– Sketch the framework design using Java code fragments and/or UML diagrams.
– Analyse your design in terms of the unification and separation variant of the TEMPLATE

METHOD pattern.
– Discuss concepts introduced from a theoretical viewpoint.
– Relate to other topics.

23

0.23 Clean Code and Refactoring

A HotStone Game implementation uses an array to implement the battlefield of the two play-
ers, index 0 is Findus, while index 1 is Peddersen:� �

1 private ArrayList<Card>[] f i e l d ;� �
Consider the following (partial) method implementation of our HotStone’s attackCard():� �

1 @Override
2 public S t a t u s attackCard (Player playerAttacking ,
3 Card attackingCard , Card defendingCard) {
4 S t a t u s s t a t u s = null ;
5 i f (p layerAttacking == Player . FINDUS)
6 s t a t u s = attackCardByFindus (attackingCard , defendingCard) ;
7 e lse
8 s t a t u s = peddersensAttackCard (defendingCard , at tackingCard) ;
9

10 return s t a t u s ;
11 }
12
13 private S t a t u s peddersensAttackCard (Card defendingCard , Card attackingCard) {
14 S t a t u s s t a t u s ;
15 i f (at tackingCard . getOwner () != Player .PEDDERSEN) {
16 s t a t u s = S t a t u s .NOT OWNER;
17 } e lse {
18 i f (defendingCard . getOwner () == Player .PEDDERSEN) {
19 s t a t u s = S t a t u s .ATTACK NOT ALLOWED ON OWN MINION;
20 } e lse {
21 i f (Player .PEDDERSEN != playerInTurn) {
22 s t a t u s = S t a t u s . NOT PLAYER IN TURN ;
23 } e lse {
24 i f (! at tackingCard . i s A c t i v e ()) {
25 s t a t u s = S t a t u s .ATTACK NOT ALLOWED FOR NON ACTIVE MINION;
26 } e lse {
27 StandardCard atC = (StandardCard) attackingCard ;
28 StandardCard defender = (StandardCard) defendingCard ;
29 / / F indus a t t a c k s t h e c a r d
30 atC . lowerHealthBy (defender . getAttack ()) ;
31 defender . lowerHealthBy (atC . getAttack ()) ;
32
33 / / remove d e f e a t e d minions
34 i f (atC . getHealth () <= 0)
35 f i e l d [1] . remove (atC) ;
36 i f (defender . getHealth () <= 0)
37 f i e l d [0] . remove (defender) ;
38
39 / / t o g g l e t h e a c t i v e f l a g o f a t t a c k e r
40 atC . s e t A c t i v e (f a l s e) ;
41
42 s t a t u s = S t a t u s .OK;
43 }
44 }
45 }
46 }
47 return s t a t u s ;
48 }
49 [S i m i l a r code for ’ attackCardByFindus ’]� �

You are asked to use terminology and techniques from Clean Code [Martin, 2009] to:

– Identify the (most important) Clean Code properties that are not obeyed in the code frag-
ment. You may document it using the Clean Code Template.

– Sketch a refactoring of the code fragment to clean (important parts of) it.
– Discuss the ISO 9126 Maintainability quality and its sub-qualities and discuss it with

respect to the code.
– Relate to other topics.

24

0.24 Distribution and Broker

A smartphone app “SnappyTalk” allows users to take a picture, and share it with friends on a
set of user defined friend-lists, named like “family”, “school”, or “grandparents”. For example,
I can take a picture and ask SnappyTalk to send it to all users listed in the “family” list. In this
exercise the focus will be on handling the friend-lists.

A test case for creating a friend-list, adding some friends, and reviewing it is:� �
1 @Test
2 public void shouldHandleFriendList () {
3 / / Given a l i s t o f s c h o o l f r i e n d s
4 F r i e n d L i s t s c h o o l L i s t = snappy . c r e a t e F r i e n d L i s t (” school ”) ;
5 s c h o o l L i s t . addFriend (” Bjarne ”) ;
6 s c h o o l L i s t . addFriend (” Carla ”) ;
7
8 / / When I t r y t o r e t r i e v e a l i s t a g a i n
9 F r i e n d L i s t t h e L i s t = snappy . g e t F r i e n d L i s t (” school ”) ;

10 / / Then c o n t e n t s i s c o r r e c t
11 a s s e r t T h a t (t h e L i s t . s i z e () , i s (2)) ;
12 a s s e r t T h a t (t h e L i s t . get (0) , i s (” B jarne ”)) ;
13 a s s e r t T h a t (t h e L i s t . get (1) , i s (” Carla ”)) ;
14 }� �

Given the interfaces:� �
1 public i n t e r f a c e SnappyTalk {
2 / / C r e a t e and r e t u r n a new F r i e n d L i s t wi th t h e g i v e n name
3 F r i e n d L i s t c r e a t e F r i e n d L i s t (S t r i n g listName) ;
4 / / Return F r i e n d L i s t f o r t h e g i v e n name
5 F r i e n d L i s t g e t F r i e n d L i s t (S t r i n g listName) ;
6 }
7 public i n t e r f a c e F r i e n d L i s t {
8 / / Add a f r i e n d t o my f r i e n d l i s t , wi th t h e g i v e n name
9 void addFriend (S t r i n g friendName) ;

10 / / Get name o f f r i e n d a t t h e g i v e n i n d e x
11 S t r i n g get (i n t index) ;
12 / / Return s i z e o f t h e f r i e n d l i s t
13 i n t s i z e () ;
14 }� �

In this exercise, you should focus on the SnappyTalk.createFriendList() method. Be aware that the
FriendList role must be a remote object.

You are asked to use terminology and techniques from the BROKER pattern to:

– Outline the BROKER pattern’s structure, roles, and responsibilities.
– Sketch Java code for the central broker roles (proxies, invoker) that need to be imple-

mented for this exercise.
– Sketch Java code for how server created objects are made available for interaction by

clients.
– Relate to other topics, notably compositional design.

25

0.25 Distribution and Broker

A SWEA student group has started a company that develops on-line two player card games
for mobile phones, inspired by their work on the SWEA mandatory HotStone project.

In the games, a player’s cards can attack an opponent’s card, thereby reducing its “life” and
ultimately destroy it, once its “life” count reaches zero, similar to HotStone. One of the card
games has a magic theme, in which players can transform (“use magic on”) a card in his/her
hand or on the field, making it into a more powerful card. A typical transformation of a card
will double its attack strength, double its life points, make it into a completely different card,
etc. A typical, client-side, invocation would look like� �

1 Card oldCard = [. . .]
2 Card newCard = game . transform (oldCard , CONVERT TO DRAGON CARD) ;� �

using interfaces for the card game domain roles as outlined here:� �
1 public i n t e r f a c e Game {
2 / / Trans form g i v e n c a r d i n t o a NEW card , us ing t h e
3 / / t r a n s f o r m a t i o n ’ t ’
4 public Card transform (Card card , Transformation t) ;
5 [. . .]
6 }
7 public i n t e r f a c e Card {
8 / / Get t h e unique (r e mo t e) o b j e c t I d
9 public S t r i n g get Id () ;

10 public i n t getAt tackPoints () ;
11 public i n t g e t L i f e P o i n t s L e f t () ;
12 }
13 public enum Transformation {
14 CONVERT TO DRAGON CARD,
15 DOUBLE THE ATTACK,
16 DOUBLE THE LIFE ,
17 [. . .]
18 }� �

In this exercise, you should focus on implementing the Card transform(...) method, that is, the
client proxy code and the invoker code for this method.

Functionally, the server-side GameServant object implements card transformations by first
deleting the transformed card from the game, and then create a new card with the new charac-
teristics (become a ’dragon card’, double the life points, etc.), and return that using our Broker’s
pass-by-reference technique.

You are asked to use terminology and techniques from the BROKER pattern to:

– Outline the BROKER pattern’s structure, roles, and responsibilities.
– Sketch Java code for the central broker roles (proxies, invoker) that need to be imple-

mented for this exercise.
– Sketch Java code for how server created objects are made available for interaction by

clients.
– Relate to other topics, notably compositional design.

26

