
The Solution First Programming Process—or “How Quick
Fix is much more than a quick fix”!

Henrik Bærbak Christensen
Department of Computer Science

Aabogade 34
8200 Aarhus N - Denmark

hbc@cs.au.dk

ABSTRACT
Learning to program is hard and one major obstacle for stu-
dents is getting to grips with the programming process itself:
What do I do now, what are the next steps, and what end
result do I want to achieve? Further complications arise
as many, even simple, designs require quite a lot of code
to be written that are just “stepping stones” on the path
to a solution. Thus, instead of “writing the code that ex-
presses my final design”, we have to “write some code that
will eventually be used by the final design code that I hope
to write soon.” However, modern integrated development
environments have strong programming language support
which allows us a programming process that starts by writ-
ing the solution code. In this paper, we will exemplify such a
solution first programming process by a small example, and
advocate that teachers take full advantage of the support of-
fered by modern IDEs to teach a more natural programming
process for our students.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.6 [Software Engineering]: Program-
ming Environments; K.3.2 [Computers and Education]:
Computer and Information Science Education

General Terms
Design, Human Factors

Keywords
Programming process, Development environment, Incremen-
tal Development, Pedagogy, Programming Education, De-
sign

1. INTRODUCTION
Developing software is, by its very nature, always a pro-

cess, whether we are formally aware of it or not [2, p. 4.2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE/SEET 2014 Hyderabad, India
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Programming entails a lot of skills. Curriculum (and
indeed much teaching) have a tendency to focus on the
“nouns” or “topics” in programming: language constructs,
algorithms, data structures, objects, recursion, testing, etc.
This topic focus is often prominent in text books in pro-
gramming which use it as an organizing principle for the
chapters. The benefit for the teacher is obvious as you may
mix chapters from different books or use them out of order.
However, the liability is that it neglects one of the hardest
challenges of programming namely that of combining the
proper set of techniques in the right order for the problem
at hand [3, 4]. Basically, the topic based approach leaves
the students with unconnected islands of skills, and little
awareness of the process of developing software.

In many disciplines, the process is central in learning: The
tools of a carpenter is of little use if not trained in the process
of using them. Early attempts to define a programming
process included top-down programming in the 1970s and
1980s and later bottom-up programming in the 1990s. Both
provided a compelling conceptual framework but fell short
in covering the actual complexity of developing non-trivial
systems. In top-down programming (taken literally) only
non-executable abstractions exists until the very last stage
which means no real feedback is available for early detection
and correction of mistakes. In bottom-up programming, the
situation is essentially the same: while low level modules
exist and compile, they are not integrated nor provide end-
user functionality until the very last stage of development,
much to late to detect misunderstandings in requirements
and architecture. Thus, while the techniques were taught,
successfull development meant breaking the doctrine.

Agile methodologies and notably test-driven programming
came with a refreshing new take and a very concrete pro-
gramming process which includes a vocabulary of process
steps (TDD patterns) as well as an overall process (the
rhythm) [1]. These processes were real programming pro-
cesses with a strong focus on the actual development of
code. Caspersen and Kölling [2] combines aspects of the ag-
ile paradigm’s focus on working functional increments and
iterative development process into a novice programming
process called STREAM. Here, the agile idea of adding func-
tional increments during sprints is reformulated in a teach-
ing context as growing islands of functionality in a stepwise
improvement cycle. Still, when it comes to the manifes-
tation of the systematic programming process for novices,
their process has a flavour of top-down programming, like
“create stub classes for all interfaces in the project.”

These programming process descriptions are independent



of the actual tooling i.e. the actual development environment
used. While this is appropriate from the point of generali-
sation and general applicability, it also misses an important
practical point: Software is developed using strong develop-
ments tools and they provide services that, as we will show,
may drastically influence the actual programming process in
a way that it becomes more efficient as well as more peda-
gogical.

The main contribution of this paper can thus be viewed
as both a very simple tool trick as well as a major challenge
to the educational research in programming process models.
From the tool trick perspective, we will demonstrate how
Eclipse’s “Quick Fix” feature can speed up development—
for any teacher to quickly include as a nice feature in his or
her teaching. From the educational research challenge per-
spective, we will outline how this innocent looking feature
actually drastically changes the flow of the programming
process itself in a way that is more pedagogical (“logical”
in a sense) and leads to faster development. We term this
process solution first programming as it starts with the ac-
tual programming problem to be solved—and solves it right
away!

Our paper is structured with a concrete example of the
process in section 2 where we present a small programming
task, outline a classic programming process for solving it,
and next in detail present how it is solved using solution first
programming. We present some concrete measurements on
the process in section 3 along with discussions and relations
to other work on programming process, before concluding in
section 4.

2. PROCESS WALKTHROUGH
What better way to demonstrate a process than by doing

it? Below we will define a small programming task, that of
refactoring an existing piece of code to prepare the design
for handling more variants. First we will shortly outline how
this may traditionally be done, and next walk through the
solution first programming process. As a textual presenta-
tion required in a paper is a mediocre medium for unfolding
a process, you will find a link to a video showing the process
at the end of the section.

2.1 The Task
The programming task is taken from the textbook[5] and

used in class for introducing the Strategy pattern[9] at the
conceptual level and used for demonstrating refactoring[8]
at the programming level.

The context is a pay station at a parking lot. Our cus-
tomers from Alphatown want drivers to pay a flat rate of
5 cent for every 2 minutes parking time. Test-driven devel-
opment (TDD)[1] has been used to implement the domain
code and in particular the addPayment method which vali-
dates the coin, accumulates inserted money, and calculates
total amount of parking time bought:

public void addPayment ( int coinValue )
throws I l l e g a l C o i n E x c e p t i o n {

switch ( coinValue ) {
case 5 : break ;
case 10 : break ;
case 25 : break ;
default :

throw new I l l e g a l C o i n E x c e p t i o n (
” I n v a l i d co in : ”+coinValue ) ;

-- Responsibilities:
Accept payment
Know earning, time bought
Print receipts
Handle buy and cancel

«interface»
PayStation

-- Responsibility
Calculate parking time

«interface»
RateStrategy

-- Responsibility
Calculate Alphatown rates

LinearRateStrategy

-- Responsibility
Calculate Betatown rates

ProgressiveRateStrategy

Figure 1: A Strategy pattern based design

}
in se r tedSoFar += coinValue ;

timeBought = insertedSoFar / 5 * 2;

The interesting issue arises when Betatown wants to buy
our pay station product but requires another algorithm for
rate calculation. That is, the functionality captured by the
statement marked in gray in the above code needs to vary
for our two customers.

A sound solution is to introduce a Strategy pattern: a
RateStrategy interface with two implementing classes, one
for Alphatown’s flat rate calculation, and another for Beta-
town’s algorithm, as outlined in Figure 2.1.

Thus the present method addPayment’s code must be refac-
tored so the rate calculation statement instead becomes:

[ . . . ]
in se r tedSoFar += coinValue ;

timeBought = rateStrategy.calculateTime(insertedSoFar);

To bootstrap this change and ensure no defects are intro-
duced, we first have to make all Alphatown’s test cases pass
on the refactored code. This leads to the issue of the paper:
Which programming process should we use to refactor the
pay station system?

2.2 Traditional Programming
We dare call the programming process outlined below for

the “traditional” process to distinguish it from our proposed
solution first process. We use that term because it is in
line with the TDD principles of “taking small steps”[1] and
avoids long periods in which the code does not compile or
pass its tests, it is seen in text books, and finally because we
ourselves have practiced this process and seen colleagues do
so for years.

A feasible path entails the following actions (Full details
to be found in [5, Chapter 8]):

¬ Introduce the RateStrategy interface with the calculate-
Time method. Compile everything to ensure no syntax er-
rors are introduces.

 Introduce an implementing class LinearRateStrategy that
implements the RateStrategy interface, and copy the sim-
ple rate calculation algorithm into its calculateTime method.
Compile to validate.

® Introduce an instance variable, rateStrategy of type Rat-
eStrategy in the PayStation class, and assign this variable a
new instance of LinearRateStrategy. Compile to validate.

¯ Finally, do the refactoring of the rate calculation: Change
the timeBought = ... into the final form
= rateStrategy.calculateTime(insertedSoFar);. Compile and

run the all tests to ensure no defects have been introduced.



This programming process has the merit that the code
compiles and all tests run after each step, and of course
solves the task. However, note that it is the very last step
that actually solves the core issue here: to delegate the rate
calculation instead of doing it in-place. Alas, all the previous
steps are “just” overtures to the final crescendo which is the
solution. But it requires that we have the design of the final
solution“in our head”before committing to all these actions,
as the final step is a “keystone” that finally validates all the
previous steps.

From a learning perspective, this process seems “back-
wards”. In class, we describe the goal we want to achieve,
namely replacing the in-place calculation of timeBought with
a delegation to a strategy object. But our programming
process doesn’t start there and is further obscured by im-
plementation effort which isn’t used until the very last step.
Of course, our strong students know exactly what goes on.
However, our weaker students may become confused.

Another issue is that we detect faulty designs late. What
if we had made a bad initial plan only to find out our mis-
take in this last step? Then the numerous previous steps
potentially had to be undone or at least modified. While
this “does not happen in class” because we as teachers are
carefully prepared (we took all the wrong paths in our of-
fices and only take the correct one down to the lecture room
for presentation), it will happen to the students when they
struggle with their exercises.

2.3 Solution First Programming
But—why this backwards approach when we know what

we want right from the start? Why not just change the
statement in focus into

[ . . . ]

timeBought = rateStrategy.calculateTime(insertedSoFar);

right away?
This is possible because Eclipse will fill out all the missing

parts in an interactive session with us! The strong under-
standing of Java in modern IDEs saves us both from a lot of
typing as well as language mistakes. In Eclipse this feature
is called “quick fix” [7].

The faster and much more direct route to the exact same
solution unfolds like this. (We recommend watching the
video presentation found at http://www.cs.au.dk/~baerbak/
research/seet2014.html as it is a better medium for show-
ing process.)

¬ Introduce the solution

Eclipse will mark the line with the Quick Fix icon, the red
icon on the left of line 42.

 Clicking the quick fix, we can select the action required:
create the rateStrategy field.

which creates the field. However, the type is Object which
is wrong.

® Thus, we change the type to RateStrategy. This type is
unknown and therefore another quick fix icon appears, and
we choose to create the RateStrategy interface:

The “New Java Interface” pop-up appears (not shown here
due to space) but all default values are correct so it is just a
matter of hitting “Finish” to create the interface. This will
remove the ’quick fix’ on the rateStrategy field declaration
line but not on the line in the addPayment method.

¯ The problem is that method calculateTime is unknown.
We click ’quick fix’ and select to create the method.

At this moment, everything compiles but the tests fail be-
cause the rateStrategy is a null reference.

° The fastest solution is to assign rateStrategy a new in-
stance of LinearRateStrategy directly. This leads to yet an-
other ’quick fix’ suggestion:

This opens the “New Java Class” pop-up, and again all de-
fault values are correct and we can just hit “Finish” to create
the class with a stub implementation.

± The final step is trivial as we introduce the proper rate
calculation.

All tests pass. Done.

3. DISCUSSION
To compare the two programming processes we registered

keyboard activity using WhatPulse [12] on three sessions,
solving the above refactoring exercise. In session 1 we solved
it traditionally (section 2.2) and used Emacs as editor and
Ant in the shell for compilation and testing. We tried to min-
imize effort as best possible by copying and pasting (copy
“RateStrategy.java” to “LinearRateStrategy.java” and just
changing the code) as well as by using Emacs’s Dynamic
Abbrev Expansion [6] for name completion. In session 2 we
again solved it traditionally (section 2.2) but used Eclipse’s
generation facilities as much as possible (like clicking ’New
Interface’ and fill in the dialog instead of creating an in-
terface source file from scratch), and finally in session 3 we

http://www.cs.au.dk/~baerbak/research/seet2014.html
http://www.cs.au.dk/~baerbak/research/seet2014.html


solved it using the solution first programming process (sec-
tion 2.3). The table below shows statistics on key strokes
and mouse clicks. They are averages over doing the same
exercise five times in a row for each session.

Session keystrokes mouse clicks
1 (Emacs+Ant) 387 17
2 (Eclipse/Trad) 178 20
3 (Eclipse/Sol. First) 101 28

While these numbers cannot claim strong statistical va-
lidity, they never-the-less confirm our informal impression.
First, though Emacs is an excellent editor, it is not a full
IDE with a deep knowledge of Java, and this shows up in
more typing, and also more time spent fixing typos and com-
pilation issues. Second, the solution first programming pro-
cess trades more mouse clicks for less typing. Indeed, the
amount of keystrokes used in session 3 is much less than the
309 characters that define the source code of RateStrategy
and LinearRateStrategy.

While saving time and effort as hinted from the above
experiment is of course interesting, it is not the essential
aspect. The essential aspect is that

the programming process steps now align with our
design intention

Thus, when we want a solution that delegates to a strat-
egy object, we do it right away. We solve the problem as
the first move in our IDE—and essentially we are finished at
this point. The “rest” is then an interactive session, guided
by quick fix suggestions of Eclipse, but directed by us by
providing minimal but semantical strong information: Nam-
ing interfaces and classes, indicating package membership,
changing visibility, etc. The chore tasks are handled by the
IDE. Thus we do not really “code” ourselves—Eclipse does
this under our supervision.

Note that of the six steps in section 2.3 only three are con-
cerned with semantics: in step ¬ we write the “final” code;
in ® we have to change the type of the field to RateStrat-
egy, and finally in step ± we enter the rate calculation code.
The other steps are automatic remedies to make the code
compile again, and the Eclipse suggestions are all correctly
guessed.

On the downside of this process is the fact that it is
strongly tied to a particular IDE. We have demonstrated it
using Eclipse and know similar features in other main stream
IDEs. But, of course, if you teach using a more classic setup
of editor and compiler, or if you teach in programming lan-
guages that does not have this kind of support, you are out
of luck.

4. CONCLUSION
We have proposed to further explore a new programming

process which we denote solution first programming. Tra-
ditionally, many utilize a process that is rather bottom-up,
programming code pieces that are deemed necessary for a
solution to come later, as it avoids long period of code that
cannot compile and cannot pass tests. In a learning context,
this is unfortunate, as it introduces a long delay between a
session is started and the actual solution to the task is put
in place. In addition, it is also unfortunate as we may make
wrong decisions about the nature of the final solution and
this is discovered late in the process.

In solution first programming, the statements that repre-
sent the final solution is written first. Such a solution will

refer to unknown interfaces, classes, instances, and methods,
but current main-stream IDEs have strong support for sug-
gesting code additions that will quickly “fill in the blanks”
of the solution. We have demonstrated the technique using
a refactoring task, and we claim it is more natural and bet-
ter in a learning context. We have also shown initial data
to support that it is also a faster programming process and
the code produced is less prone to errors. The solution first
programming process, however, requires strong support by
the IDE, as it is a premise that the IDE can propose and
generate high quality code for the missing parts.

While the process is interesting by itself in practical teach-
ing of programming, we also invite the teaching community
to revisit the research concerning programming processes.
Solution first programming have strong relations to top-
down programming as well as the test-driven programming
style of approaching abstractions from their“outside” i.e. use
the methods before implementing the methods. The tradi-
tional disadvantage of these approaches such as long period
where the code cannot compile or intensive use of stubs and
mock objects [11, 10], is mitigated by the code generation
facilities of modern IDEs.

5. REFERENCES
[1] K. Beck. Test-Driven Development by Example.

Addison-Wesley Signature Series, 2003.

[2] M. E. Caspersen and M. Kolling. Stream: A first
programming process. Trans. Comput. Educ.,
9(1):4:1–4:29, Mar. 2009.

[3] H. B. Christensen. Systematic testing should not be a
topic in the computer science curriculum! SIGCSE
Bull., 35(3):7–10, June 2003.

[4] H. B. Christensen. A story-telling approach for a
software engineering course design. In Proceedings of
the 14th annual ACM SIGCSE conference on
Innovation and technology in computer science
education, ITiCSE ’09, pages 60–64, New York, NY,
USA, 2009. ACM.

[5] H. B. Christensen. Flexible, Reliable Software—Using
Patterns and Agile Development. CRC Press, 2010.

[6] Emacs dynamic abbrev expansion.
http://www.gnu.org/software/emacs/manual/html_

node/emacs/Dynamic-Abbrevs.html. Accessed Oct
2013.

[7] Eclipse documentation.
http://help.eclipse.org/kepler. Section: Java
development user guide, Concepts, Java Views, Quick
Fix and Assist. Accessed Oct 2013.

[8] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reuseable
Object-Oriented Software. Addison-Wesley, 1995.

[10] T. Mackinnon, S. Freeman, and P. Craig.
Endo-testing: unit testing with mock objects. Extreme
programming examined, pages 287–301, 2001.

[11] D. Thomas and A. Hunt. Mock objects. IEEE
Software, pages 22–24, May/June 2002.

[12] http://www.whatpulse.org. Accessed Oct 2013.

http://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic-Abbrevs.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic-Abbrevs.html
http://help.eclipse.org/kepler
http://www.whatpulse.org

	Introduction
	Process Walkthrough
	The Task
	Traditional Programming
	Solution First Programming

	Discussion
	Conclusion
	References

